Introduction
Machinevisionisacomprehensivetechnology,includingimageprocessing,mechanicalengineeringtechnology,control,electriclightsourcelighting,opticalimaging,sensors,analoganddigitalvideotechnology,computersoftwareandhardwareTechnology(imageenhancementandanalysisalgorithms,imagecards,I/Ocards,etc.).Atypicalmachinevisionapplicationsystemincludesimagecapture,lightsourcesystem,imagedigitizationmodule,digitalimageprocessingmodule,intelligentjudgmentdecisionmoduleandmechanicalcontrolexecutionmodule.
Themostbasicfeatureofamachinevisionsystemistoimprovetheflexibilityandautomationofproduction.Insomedangerousworkingenvironmentsthatarenotsuitableformanualoperationsoroccasionswhereartificialvisionisdifficulttomeettherequirements,machinevisionisoftenusedtoreplaceartificialvision.Atthesametime,inthemassrepetitiveindustrialproductionprocess,theuseofmachinevisioninspectionmethodscangreatlyimprovetheefficiencyandautomationofproduction.
Development
Nowadays,Chinaisbecomingoneofthemostactiveregionsinthedevelopmentofmachinevisionintheworld,withapplicationscoveringindustry,agriculture,medicine,military,aerospace,meteorology,astronomy,andpublicsecurity,Transportation,security,scientificresearchandotherindustriesinthenationaleconomy.TheimportantreasonisthatChinahasbecometheprocessingcenteroftheglobalmanufacturingindustry.Thehigh-demandpartsprocessingandthecorrespondingadvancedproductionlineshaveenabledmanyinternationallyadvancedmachinevisionsystemsandapplicationexperiencetoenterChina.
Afteralongperiodofdormancy,China'smachinevisionmarketusheredinexplosivegrowthin2010.ThedatashowsthatChina'smachinevisionmarketreached830millionyuanthatyear,anincreaseof48.2%year-on-year.Amongthem,thegrowthrateofsmartcameras,software,lightsourcesandboardsallreached50%,andindustrialcamerasandlensesalsomaintainedagrowthrateofmorethan40%.,Arethehighestlevelsince2007.
In2011,China'smachinevisionmarketenteredapost-growthadjustmentperiod.Comparedwiththerapidgrowthin2010,althoughthegrowthratehasdeclined,itstillmaintainsahighlevel.In2011,thescaleofChina’smachinevisionmarketwas1.08billionyuan,ayear-on-yearincreaseof30.1%,andthegrowthratedropped18.1percentagepointsfrom2010.Amongthem,smartcameras,industrialcameras,softwareandboardsallmaintainedagrowthrateofnolessthan30%.Thelightsourcehasalsoreachedagrowthrateof28.6%,whichismuchhigherthanthegrowthrateofChina'soverallautomationmarket.Theelectronicsmanufacturingindustryisstillthemainfactordrivingtherapidgrowthofdemand.In2011,themarketsizeoftheelectronicsmanufacturingindustryformachinevisionproductswasRMB500million,anincreaseof35.1%.Themarketsharereached46.3%.Electronicmanufacturing,automobiles,pharmaceuticalsandpackagingmachineryaccountfornearly70%ofthemachinevisionmarketshare.
Overview
Machinevision
Thecharacteristicofthemachinevisionsystemistoimprovetheflexibilityandautomationofproduction.Insomedangerousworkingenvironmentsthatarenotsuitableformanualoperationsoroccasionswhereartificialvisionisdifficulttomeettherequirements,machinevisionisoftenusedtoreplaceartificialvision;atthesametime,inthemassindustrialproductionprocess,manualvisualinspectionofproductqualityisinefficientandinaccurate.,Theuseofmachinevisioninspectionmethodscangreatlyimproveproductionefficiencyandthedegreeofautomationofproduction.Moreover,machinevisioniseasytorealizeinformationintegration,anditisthebasictechnologytorealizecomputerintegratedmanufacturing.
Basicstructure
Atypicalindustrialmachinevisionsystemincludes:lightsource,lens(fixedfocuslens,zoomlens,telecentriclens,microscopelens),camera(includingCCDcamera)AndCOMScamera),imageprocessingunit(orimagecapturecard),imageprocessingsoftware,monitor,communication/inputoutputunit,etc.
Thesystemcanbefurtherdividedinto
First,thecollectionandanalysissystemareseparated.
HostComputer
FrameGrabberandimageprocessor
Videocamera
Fixfocuslenslens
Microscopelens
Lightingequipment
HalogenlightsourceLEDlightsource
Highfrequencyfluorescentlightsource
p>Flashsource
Otherspeciallightsources
Imagedisplay
LCD
Mechanismandcontrolsystem
PLC,PC-Basecontroller
Precisiontable
Servomotionmachine
Two,collectionandanalysisintegratedsystem
b>Smartcamera(integratedimageacquisitionandanalysis)
Othersupportingperipheralequipment:lightsource,display,PLCcontrolsystem,etc.
Workingprinciple
ThemachinevisioninspectionsystemusesaCCDcameratoconvertthedetectedtargetintoanimagesignal,whichissenttoadedicatedimageprocessingsystem,accordingtothepixeldistributionandbrightness,colorandotherinformation,Convertedintodigitalsignals,theimageprocessingsystemperformsvariousoperationsonthesesignalstoextractthecharacteristicsofthetarget,suchasarea,number,position,length,andthenoutputtheresultsaccordingtothepresetallowabilityandotherconditions,includingsize,angle,andsize.Count,pass/fail,yes/no,etc.,torealizetheautomaticidentificationfunction.
Typicalstructure
Atypicalmachinevisionsystemincludesthefollowingfiveblocks:
Lighting
LightingaffectstheinputofthemachinevisionsystemImportantfactors,itdirectlyaffectsthequalityoftheinputdataandtheapplicationeffect.Sincethereisnogeneralmachinevisionlightingequipment,foreachspecificapplicationexample,thecorrespondinglightingdeviceshouldbeselectedtoachievethebesteffect.Thelightsourcecanbedividedintovisiblelightandinvisiblelight.Severalcommonlyusedvisiblelightsourcesareincandescentlamps,fluorescentlamps,mercurylampsandsodiumlamps.Thedisadvantageofvisiblelightisthatthelightenergycannotbekeptstable.Howtokeeplightenergystabletoacertainextentisanurgentproblemthatneedstobesolvedintheprocessofpracticalapplication.Ontheotherhand,ambientlightmayaffectthequalityoftheimage,soaprotectivescreencanbeusedtoreducetheimpactofambientlight.Thelightingsystemcanbedividedintobacklighting,forwardlighting,structuredlightandstroboscopiclightingaccordingtoitsilluminationmethod.Amongthem,thebacklightingisthattheobjecttobemeasuredisplacedbetweenthelightsourceandthecamera,anditsadvantageisthatitcanobtainhigh-contrastimages.Theforwardilluminationisthatthelightsourceandthecameraarelocatedonthesamesideoftheobjectundertest,whichisconvenientforinstallation.Structuredlightilluminationistoprojectagratingoralinelightsourceontothemeasuredobject,anddemodulatethethree-dimensionalinformationofthemeasuredobjectaccordingtothedistortionproducedbythem.Stroboscopiclightingistoirradiatehigh-frequencylightpulsesontheobject,andthecamerashootingrequiressynchronizationwiththelightsource.
Lens
FOV(FieldofVision)=requiredresolution*sub-pixel*camerasize/PRTM(partmeasurementtoleranceratio)
lensselectionNote:
①Focallength②Targetheight③Imageheight④Magnification⑤distancefromimagetotarget⑥centerpoint/node⑦distortion
Howtodeterminethefocallengthofthelensinvisualinspection
Whenchoosingasuitableindustriallensforaspecificapplication,thefollowingfactorsmustbeconsidered:
·Fieldofview-thesizeoftheimagedarea.
·Workingdistance(WD)-thedistancebetweenthecameralensandtheobservedobjectorarea.
·CCD-thesizeofthecameraimagingsensordevice.
·Thesefactorsmustbetreatedinaconsistentmanner.Ifyouaremeasuringthewidthofanobject,youneedtousethehorizontalCCDspecifications,andsoon.Ifthemeasurementismadeininches,thecalculationismadeinfeet,andfinallyconvertedtomillimeters.
Refertothefollowingexample:Thereisa1/3”C-mountCCDcamera(4.8mmhorizontally).Thedistancebetweentheobjectandthefrontofthelensis12”(305mm).Thesizeofthefieldofvieworobjectis2.5”(64mm).Theconversionfactoris1”=25.4mm(rounded).
FL=4.8mmx305mm/64mm
FL=1464mm/64mm
FL=Accordingtotherequirementsof23mmlens
FL=0.19”x12”/2.5”
FL=2.28”/2.5”
FL=0.912”x25.4mm/inch
FL=Accordingtotherequirementsofthe23mmlens
Note:Donotconfusetheworkingdistancewiththedistancefromtheobjecttotheimage.Theworkingdistanceisthedistancefromthefrontoftheindustriallenstotheobjectbeingobserved.ThedistancefromtheobjecttotheimageisthedistancebetweentheCCDsensorandtheobject.Whencalculatingtherequiredfocallengthoftheindustriallens,theworkingdistancemustbeused.
High-speedcamera
Camera(2photos)
Accordingtodifferentstandards,itcanbedividedinto:Standardresolutiondigitalcamerasandanalogcameras,etc.Differentcamerasandhigh-resolutioncamerasshouldbeselectedaccordingtodifferentpracticalapplications:Dividedbyimagingcolor,itcanbedividedintocolorcamerasandblackandwhitecameras;
Dividedbyresolution,thenumberofpixelsis38Thosewithlessthan10,000areordinarytype,andthehigh-resolutiontypewithpixelsabove380,000;
Dividedaccordingtothesizeofthephotosensitivesurface,itcanbedividedinto1/4,1/3,1/2,1inchCamera;
Accordingtothescanningmethod,itcanbedividedintotwomethods:linescancamera(linescancamera)andareascancamera(areascancamera);(areascancameracanbedividedintointerlacedscancameraandProgressivescancamera);
Accordingtothesynchronizationmethod,itcanbedividedintoordinarycameras(internalsynchronization)andcameraswithexternalsynchronizationfunctions.
Framegrabber
Acquisitioncard(2photos)
Framegrabberisonlyapartofacompletemachinevisionsystem,butitplaysAveryimportantrole.Theframegrabberdirectlydeterminestheinterfaceofthecamera:blackandwhite,color,analog,digitalandsoon.APCIorAGPcompatiblecapturecardismoretypical,whichcanquicklytransferimagestocomputermemoryforprocessing.Somecapturecardshavebuilt-inmultiplexers.Forexample,youcanconnect8differentcameras,andthentellthecapturecardtousetheinformationcapturedbywhichcamera.Somecapturecardshaveabuilt-indigitalinputtotriggerthecapturecardtocapture.Whenthecapturecardcapturesanimage,thedigitaloutputporttriggersthegate.
Visionprocessor
Thevisionprocessorintegratesacapturecardandaprocessor.Inthepast,whenthecomputerspeedwasslow,thevisualprocessorwasusedtospeedupthevisualprocessingtask.Thecapturecardtransmitstheimagetothememory,andthencalculatesandanalyzes.ThecurrentmainstreamconfigurationofPLC,andtheconfigurationishigher,thevisionprocessorhasalmostwithdrawnfromthemarket.
Machineselection
Inamachinevisionsystem,itisveryimportanttoobtainahigh-qualityprocessableimage.Thereasonforthesuccessofthesystemistoensurethattheimagequalityisgoodandthefeaturesareobvious.Thefailureofamachinevisionprojectismostlyduetopoorimagequalityandunobviousfeatures.Toensureagoodimage,asuitablelightsourcemustbeselected.
Basicelementsoflightsourceselection:
Contrast:Contrastisveryimportantformachinevision.Themostimportanttaskoflightingformachinevisionapplicationsistomaximizethecontrastbetweenthefeaturesthatneedtobeobservedandtheimagefeaturesthatneedtobeignored,sothatthefeaturescanbeeasilydistinguished.Contrastisdefinedasasufficientamountofgrayscaledifferencebetweenafeatureanditssurroundingarea.Goodlightingshouldbeabletoensurethatthefeaturestobedetectedstandoutfromotherbackgrounds.
Brightness:Whenchoosingtwolightsources,thebestchoiceistochoosethebrighterone.Whenthelightsourceisnotbrightenough,theremaybethreebadsituations.First,thesignal-to-noiseratioofthecameraisnotenough;becausethebrightnessofthelightsourceisnotenough,thecontrastoftheimageisboundtobeinsufficient,andthepossibilityofnoiseintheimageincreasesimmediately.Secondly,thebrightnessofthelightsourceisnotenough,andtheaperturemustbeincreased,therebyreducingthedepthoffield.Inaddition,whenthebrightnessofthelightsourceisinsufficient,randomlightsuchasnaturallightwillhavethegreatestimpactonthesystem.
Robustness:Anotherwaytotestagoodlightsourceistoseeifthelightsourceisleastsensitivetothepositionofthepart.Whenthelightsourceisplacedindifferentareasordifferentanglesofthecamera'sfieldofview,theresultingimageshouldnotchangeaccordingly.Thelightsourcewithstrongdirectivityincreasesthepossibilityofspecularreflectioninthehighlightarea,whichisnotconducivetothesubsequentfeatureextraction.
Agoodlightsourceneedstobeabletomakethefeaturesyouneedtolookforveryobvious.Inadditiontothecamerathatcancapturetheparts,agoodlightsourceshouldbeabletoproducemaximumcontrast,sufficientbrightnessandinsensitivetochangesinthepositionoftheparts.Oncethelightsourceisselected,therestoftheworkismucheasier.Thespecificlightsourceselectionmethodalsoliesinthepracticalexperienceoftheexperiment.
Applicationcase
Intheclothproductionprocess,highlyrepetitiveandintelligenttaskslikeclothqualityinspectioncanonlybedonebymanualinspection,behindthemodernassemblylineItcanoftenbeseenthatmanyinspectionworkersperformthisprocess,whichaddshugelaborandmanagementcoststothecompany,butitstillcannotguaranteea100%inspectionpassrate(ie"zerodefect").Theinspectionofclothqualityisrepetitivework,error-proneandlowefficiency.
Automatictransformationoftheassemblylinemakestheclothproductionassemblylineafast,real-time,accurateandefficientassemblyline.Ontheassemblyline,thecolorandquantityofallclothsmustbeautomaticallyconfirmed(hereinafterreferredtoas"clothinspection").Theautomaticrecognitiontechnologyofmachinevisionisusedtocompletetheworkpreviouslydonebyhumans.Inmassinspectionofcloth,manualinspectionofproductqualityisinefficientandinaccurate.Usingmachinevisioninspectionmethodscangreatlyimproveproductionefficiencyandautomation.
Featureextractionandidentification
Generalclothdetection(automaticidentification)firstuseshigh-definition,high-speedcameralenstocapturestandardimages,andthensetsAcertainstandard;thentakethedetectedimageandcomparethetwo.Butitismorecomplicatedintheclothqualityinspectionproject:
1.Thecontentoftheimageisnotasingleimage,andthenumber,size,color,andlocationofimpuritiesineachareatobetestedmaynotbethesame.
2.Theshapeofimpuritiesisdifficulttodetermineinadvance.
3.Becausetherapidmovementoftheclothreflectslight,theremaybealotofnoiseintheimage.
4.Therearereal-timerequirementsforfabricinspectionontheassemblyline.
Duetotheabovereasons,correspondingalgorithmsshouldbeadoptedinimagerecognitionprocessingtoextractthecharacteristicsofimpurities,performpatternrecognition,andrealizeintelligentanalysis.
Colordetection
Generallyspeaking,theimagesobtainedfromcolorCCDcamerasareallRGBimages.Thatistosay,eachpixeliscomposedofthreecomponents,red(R),green(G),andblue(B),torepresentapointintheRGBcolorspace.Theproblemisthatthesechromaticaberrationsaredifferentfromtheperceptionofthehumaneye.Evenasmallamountofnoisecanchangethepositioninthecolorspace.Sonomatterhowsimilarourhumaneyesfeel,theyarenotallthesameinthecolorspace.Basedontheabovereasons,weneedtoconvertRGBpixelsintoanothercolorspaceCIELAB.Thepurposeistomakeourhumaneyesfeelascloseaspossibletothecolordifferenceinthecolorspace.
Blobdetection
Accordingtotheprocessedimageobtainedabove,accordingtotherequirements,detecttheimpuritystainsunderapurecolorbackground,andcalculatetheareaoftheoutstandingspots,Todeterminewhetheritiswithinthedetectionrange.Therefore,theimageprocessingsoftwaremusthavethefunctionofseparatingthetarget,detectingthetarget,andcalculatingitsarea.
Blobanalysis(BlobAnalysis)istoanalyzetheconnecteddomainofthesamepixelintheimage,andtheconnecteddomainiscalledBlob.ThestainsintheimageprocessedbyBinaryThresholdingcanbeconsideredasblobs.TheBlobanalysistoolcanseparatethetargetfromthebackground,andcancalculatethenumber,position,shape,directionandsizeofthetarget,andcanalsoprovidethetopologicalstructurebetweentherelevantspots.Intheprocessofprocessing,insteadofanalyzingindividualpixelsonebyone,itoperatesonlinesofgraphics.Eachlineoftheimageusesrun-lengthencoding(RLE)torepresenttheadjacenttargetrange.Comparedwiththepixel-basedalgorithm,thisalgorithmgreatlyimprovestheprocessingspeed.
Resultprocessingandcontrol
Theapplicationsavesthereturnedresultsintothedatabaseorthelocationspecifiedbytheuser,andcontrolsthemechanicalparttoperformcorrespondingmovementsaccordingtotheresults.
Accordingtotheidentificationresults,itisstoredinthedatabaseforinformationmanagement.Inthefuture,theinformationcanbesearchedandinquiredatanytime,andthemanagercanknowtheavailabilityoftheassemblylineduringacertainperiodoftime,makearrangementsforthenextwork;canknowthequalityoftheinnercloth,andsoon.
Applicationstatus
Inforeigncountries,theapplicationofmachinevisionismainlyreflectedinthesemiconductorandelectronicindustries,ofwhichabout40%-50%areconcentratedinsemiconductorsindustry.Specifically,suchasPCBprintedcircuit:variousproductionprintedcircuitboardassemblytechnologiesandequipment;single,double-sided,multi-layercircuitboards,coppercladlaminatesandrequiredmaterialsandauxiliarymaterials;auxiliaryfacilitiesandconsumables,inks,medicines,accessories,andelectronics;Packagingtechnologyandequipment;screenprintingequipmentandscreenperipheralmaterials,etc.SMTsurfacemount:SMTprocessandequipment,solderingequipment,testequipment,reworkequipmentandvariousauxiliarytoolsandaccessories,SMTmaterials,patchtablets,adhesives,flux,solderandanti-oxidationoil,solderpaste,cleaningagents,etc.;Reflowsolderingmachine,wavesolderingmachineandautomatedproductionlineequipment.Electronicproductionandprocessingequipment:electroniccomponentmanufacturingequipment,semiconductorandintegratedcircuitmanufacturingequipment,componentmoldingequipment,electronictoolsandmolds.Themachinevisionsystemhasalsobeenwidelyusedinallaspectsofqualityinspection,anditsproductsoccupyapivotalpositionintheapplication.Inaddition,machinevisionisalsousedinvariousotherfields.
InChina,theapplicationofvisiontechnologybeganinthe1990s,becausetheindustryitselfisanemergingfield,coupledwiththeinsufficientpopularityofmachinevisionproducttechnology,resultinginalmostblankapplicationsintheaboveindustries.Atpresent,mostdomesticmachinevisionsareforeignbrands.Mostdomesticmachinevisioncompaniesbasicallystartedbyactingasagentsforvariousforeignmachinevisionbrands.Withthecontinuousapplicationofmachinevision,thecompanyhasgraduallygrowninscaleandhasgraduallymaturedintechnology.
Withtheimprovementoftheeconomiclevel,3Dmachinevisionhasalsobeguntoenterpeople'sfieldofvision.3Dmachinevisionismostlyusedfortheratingoffruitsandvegetables,wood,cosmetics,bakedgoods,electroniccomponentsandpharmaceuticalproducts.Itcanimprovetheproductioncapacityofqualifiedproductsandscrapinferiorproductsearlyintheproductionprocess,therebyreducingwasteandsavingcosts.Thisfunctionisverysuitableforimagingofproductattributessuchasheight,shape,quantityandevencolor.
Intermsofindustryapplications,therearemainlypharmaceutical,packaging,electronics,automobilemanufacturing,semiconductor,textile,tobacco,transportation,logisticsandotherindustries.Usingmachinevisiontechnologytoreplacelaborcanimproveproductionefficiencyandproductquality.Forexample,inthelogisticsindustry,machinevisiontechnologycanbeusedforsortingandsortingofexpressdelivery,andmostexpresscompanieswillnotmanuallysort,reducethedamagerateofitems,improvesortingefficiency,andreducemanuallabor.
Generationanddevelopment
TheresearchofmachinevisionstartedfromtheresearchoftheAmericanscholarL.R.Robertsonunderstandingthebuildingblockworldcomposedofpolyhedronsinthemid-1960s.Thetechnologiesusedatthattime,suchaspreprocessing,edgedetection,contourformation,objectmodeling,andmatching,havebeenappliedinmachinevisioneversince.Robertsadoptedabottom-upapproachintheimageanalysisprocess.Edgedetectiontechnologyisusedtodeterminecontourlines,andareaanalysistechnologyisusedtodividetheimageintoareascomposedofpixelswithsimilargraylevels.Thesetechnologiesarecollectivelycalledimagesegmentation.Itspurposeistodescribetheanalyzedimagewithcontourlinesandregions,soastocompareandmatchwiththemodelstoredinthemachine.Practicehasshownthatitistoodifficulttouseonlybottom-upanalysis,andtop-downanalysismethodsmustbeusedatthesametime,thatis,thetargetisdividedintoseveralsub-targets,andheuristicknowledgeisusedtopredictthetarget.Thisisconsistentwiththebottom-upandtop-downmethodsusedinspeechcomprehension.Intheresearchofimageunderstanding,A.Guzmanproposedtheuseofheuristicknowledge,showingthatthemethodofexplainingcontourpaintingbysymbolicprocessdoesnothavetoresorttonumericalcalculationprogramssuchasleastsquaresmatching.
Inthe1970s,machinevisionformedseveralimportantresearchbranches:①target-guidedimageprocessing;②parallelimageprocessingandanalysisalgorithms;③extractingthree-dimensionalinformationfromtwo-dimensionalimages;④sequentialimageanalysisandmotionParameterevaluation;⑤Expressionofvisualknowledge;⑥Knowledgebaseofvisionsystem,etc.
Thelatestdiscovery
TheAchilles’heelofmachinevision:AccordingtoMIT’s“TechnologyReview”,researchersfromGoogleandtheOpenAIInstitutehavediscoveredmachinevisionalgorithmsOneoftheweaknesses:machinevisionwillbedisturbedbysomemodifiedimages,andhumanscaneasilyfindthemodificationoftheseimages.
Applicationfield
Theapplicationofmachinevisionmainlyincludesinspectionandrobotvision:
⒈Inspection:Itcanbedividedintohigh-precisionquantitativeinspection(forexample,Cellclassificationofphotomicrographs,sizeandpositionmeasurementofmechanicalparts)andqualitativeorsemi-quantitativetestingwithoutmeasuringinstruments(suchasproductappearanceinspection,identificationandpositioningofpartsontheassemblyline,defectinspectionandassemblycompletenessinspection).[Thatis,thehopperpickingproblem).Asforoperationsandactionsinasmallarea,tactilesensingtechnologyisalsoneeded.
Inaddition,thereare:
1Automaticopticalinspection
2Facerecognition
3Self-drivingcars
4Productqualityclassification
5Automaticdetectionofprintingquality
6Textrecognition
7Texturerecognition
8Trackingandpositioning
......
andothermachinevisionimagerecognitionapplications.
[MachineVisionFeatures]
⒈Thecamera'sphotographingspeedisautomaticallymatchedwiththespeedofthemeasuredobject,andtheidealimageistaken;
⒉Thesizeofthepartsrangesfrom2.4mmto12mm,andthethicknesscanbedifferent;
⒊Thesystemselectsworkpiecesofdifferentsizesaccordingtotheoperator,callsthecorrespondingvisionprogramforsizedetection,andoutputstheresults;
⒋Forpartsofdifferentsizes,thesortingdeviceandtheconveyingdevicecanpreciselyadjustthewidthofthematerialpath,sothatthepartscanmoveonafixedpathandperformvisualinspection;
⒌MachinevisionsystemdistinguishesTheratereaches2448×2048,andthedynamicdetectionaccuracycanreach0.02mm;
⒍Themisseddetectionrateofwasteproductsis0;
⒎Thesystemcanmonitorthedetectionprocessbydisplayingimages,anditcanalsopassTheinspectiondatadisplayedontheinterfacecandynamicallyviewtheinspectionresults;
⒏Ithasthefunctionoftimelyandaccuraterejectioncontrolsignalsandrejectsthewrongparts;
⒐Thesystemcanself-checkitsmainequipmentWhetherthestateisnormalornot,equippedwithastatusindicator;atthesametime,differentoperatingpermissionscanbesetforsystemmaintenancepersonnelandusers;
⒑Real-timedisplayofthedetectionscreen,Chineseinterface,youcanbrowseseveralunqualifiedimages,Ithasthefunctionofstoringandviewingtheimageofthewrongworkpieceinrealtime;
⒒cangeneratetheerrorresultinformationfile,includingthecorrespondingerrorimage,andprintitout.
Applicationexamples
⒈Intelligentintegratedtestsystemforinstrumentpanelassemblybasedonmachinevision
EQ140-ⅡautomobileinstrumentpanelassemblyisproducedbyaChineseautomobilecompanyForinstrumentproducts,theinstrumentpanelisequippedwithspeedodometer,watertemperaturemeter,gasolinemeter,ammeter,signalwarninglight,etc.Theproductionbatchislarge,andafinalqualityinspectionisrequiredbeforeleavingthefactory.Testingitemsinclude:testingtheindicationerrorsoffivemeterpointerssuchasthespeedometer;testingwhether24signalwarninglightsand9lightinglightsaredamagedormissing.Generally,manualvisualinspectionisusedforinspection,whichhaslargeerrorsandpoorreliability,whichcannotmeettheneedsofautomatedproduction.Theintelligentintegratedtestsystembasedonmachinevisionhaschangedthisstatusquo,realizedtheintelligent,fullyautomatic,high-precision,andfastqualityinspectionofthedashboardassembly,overcomevariouserrorscausedbymanualinspection,andgreatlyimprovedtheinspection.efficient.
Thewholesystemisdividedintofourparts:integratedmulti-channelstandardsignalsourcethatprovidesanalogsignalsourcefordashboard,dual-coordinateCNCsystemwithimageinformationfeedbackpositioning,cameraimageacquisitionsystemandmaster-slavemachineParallelprocessingsystem.
⒉Automaticdamagecontrolsystemforthesurfaceofmetalplates
Thesurfacequalityofmetalplates,suchaslargepowertransformercoils,flatwireradios,andhazyskins,havehighrequirements,buttheoriginaluseofartificialTheinspectionmethodofvisualinspectionorusingadialindicatorplusacontrolneedleisnotonlysusceptibletosubjectivefactors,butmayalsocausenewscratchesonthesurfacetobemeasured.Theautomaticflawdetectionsystemforthemetalplatesurfaceusesmachinevisiontechnologytoautomaticallyinspectthemetalsurfacedefects,andthedetectioniscarriedoutathighspeedandaccuracyduringtheproductionprocess.Atthesametime,duetothenon-connectedanglemeasurement,thepossibilityofnewscratchesisavoided.TheworkingprinciplediagramisshowninFigure8-6;inthissystem,alaserisusedasthelightsource,thestraylightaroundthelaserbeamisfilteredthroughapinholefilter,andthebeamexpanderandcollimatormakethelaserbeamintoparallellightAnduniformlyilluminatethesurfaceofthemetalplatetobeinspectedwithanincidentangleof45degrees.Themetalplateisplacedontheinspectiontable.TheinspectiontablecanbemovedinthethreedirectionsofX,YandZ.ThecameraadoptsTCD142Dtype2048lineChenCCD,andthelensadoptsordinarycameralens.TheCCDinterfacecircuitadoptsasingle-chipmicrocomputersystem.ThehostPCmainlycompletesimagepreprocessinganddefectclassificationordepthcalculationofscratches,etc.,andcandisplaythedetecteddefectsorscratchimagesonthedisplay.Two-waycommunicationbetweentheCCDinterfacecircuitandthePCthroughtheRS-232port,combinedwiththeasynchronousA/Dconversionmethod,constitutesahuman-machineinteractivedataacquisitionandprocessing.
Thissystemmainlyusesthecombinationoftheself-scanningcharacteristicsofthelinearCCDandtheX-directionmovementofthesteelplatetobeinspectedtoobtainthree-dimensionalimageinformationonthesurfaceofthemetalplate.
⒊Automobilebodyinspectionsystem
The100%on-lineinspectionofthecontourdimensionalaccuracyofthe800seriesoftheBritishROVERautomobilecompanyisatypicalexampleofthemachinevisionsystemusedinindustrialinspection.Forexample,thesystemconsistsof62measurementunits,eachmeasurementunitincludesalaserandaCCDcameratodetect288measurementpointsonthecarbodyshell.Thecarbodyisplacedunderthemeasuringframe,andtheprecisepositionofthecarbodyiscalibratedthroughsoftware.
Thecalibrationofthemeasuringunitwillaffectthedetectionaccuracy,soitispaidspecialattention.Eachlaser/cameraunitiscalibratedoffline.Atthesametime,thereisalsoacalibrationdevicethathasbeencalibratedwithathree-coordinatemeasuringmachineinanofflinestate,whichcanperformonlinecalibrationofthecameratop.
Thedetectionsystemdetectsthespeedofacarbodyevery40seconds,anddetectsthreetypesofcarbodies.ThesystemcomparesthetestresultwiththequalifiedsizeofthepersonandextractedfromtheCADmodel,andthemeasurementaccuracyis±0.1mm.ROVER'squalityinspectorsusethissystemtodeterminethesizeconsistencyofkeyparts,suchastheoverallappearanceofthecarbody,doors,andglasswindows.PracticehasprovedthatthesystemissuccessfulandwillbeusedforbodyinspectionofothervehiclesinROVER'ssystem.
⒋Papercurrencyprintingqualityinspectionsystem:
Thissystemusesimageprocessingtechnologytopassmorethan20characteristics(number,braille,color,pattern,etc.)ofbanknotesonthebanknoteproductionlinePerformcomparativeanalysistodetectthequalityofbanknotesandreplacethetraditionalhumaneyediscriminationmethod.
⒌Intelligenttrafficmanagementsystem:
Byplacingacameraonthetrafficarteries,whenthereareillegalvehicles(suchasrunningaredlight),thecamerawilltakepicturesofthelicenseplateofthevehicleandtransmitittothecentralmanagementThesystemusesimageprocessingtechnologytoanalyzethepicturestaken,extractthelicenseplatenumber,andstoreitinthedatabaseformanagementpersonneltoretrieve.
⒍Metallographicanalysis:
Themetallographicimageanalysissystemcanaccuratelyandobjectivelyanalyzethematrixstructure,impuritycontent,andtissuecompositionofmetalsorothermaterials.Qualityprovidesareliablebasis.
⒎Medicalimageanalysis:
Automaticclassificationandcountingofbloodcells,chromosomeanalysis,cancercellidentification,etc.
⒏Bottledbeerproductionlinedetectionsystem:
Itcandetectwhetherthebeerreachesthestandardcapacityandwhetherthebeerlabeliscomplete
⒐Large-scaleworkpieceparallelismandperpendicularitymeasuringinstrument:
Thelarge-scaleworkpieceparallelismandperpendicularitymeasuringinstrumentadoptslaserscanningandCCDdetectionsystem.ItusesastablecollimatedlaserbeamasthemeasurementbaselineandisequippedwithRotatetheaxissystem,rotatethepentagramprismtoscanoutthereferenceplanesthatareparallelorperpendiculartoeachother,andcompareitwiththefacesofthelargeworkpiecetobetested.Whenprocessingorinstallinglargeworkpieces,theerrordetectorcanbeusedtomeasuretheparallelismandperpendicularitybetweenthesurfaces.
⒑Detectordeviceforthecontoursizeoftherebar:
Usestroboscopiclightastheilluminationsource,anduseareaarrayandlineararrayCCDasthedetectorforthecontoursizeoftherebartoachievethermalDynamicdetectionsystemforonlinemeasurementofgeometricparametersofrolledrebar.
⒒Bearingreal-timemonitoring:
Visualtechnologymonitorstheloadandtemperaturechangesofthebearinginrealtime,eliminatingthedangerofoverloadandoverheating.Thetraditionalpassivemeasurementofmeasuringthesurfaceoftheballtoensureprocessingqualityandsafeoperationbecomesactivemonitoring.
⒓Measurementofcracksonmetalsurface:
Usingmicrowaveasasignalsource,accordingtothemicrowavegeneratortosendoutsquarewaveswithdifferentwaverates,measurethecracksonthemetalsurfaceandthefrequencyofmicrowavewavesThehigherthecrack,thenarrowerthemeasurablecrack.
Developmenttrends
Machinevisionhasthefollowingdevelopmenttrends.
Pricescontinuetodrop
Atpresent,themachinevisiontechnologyinmycountryisnotyetmature,mainlyrelyingonimportingacompletesetofsystemsfromabroad,andthepriceisrelativelyexpensive.Withtheadvancementoftechnologyandthefiercemarketcompetition,Thepricedrophasbecomeaninevitabletrend,whichmeansthatmachinevisiontechnologywillgraduallybeaccepted.
Functionsaregraduallyincreasing
Therealizationofmorefunctionsmainlycomesfromtheenhancementofcomputingpower,higherresolutionsensors,fasterscanningrateandimprovementofsoftwarefunctions,PCprocessingWhilethespeedofthedevicehasbeensteadilyincreasing,itspricehasalsobeendeclining,whichhaspromotedtheemergenceoffasterbuses,whichinturnallowlargerimageswithmoredatatobetransmittedandprocessedatfasterspeeds.
Productminiaturization
Theproductminiaturizationtrendallowstheindustrytopackmorepartsinasmallerspace,whichmeansthatmachinevisionproductsbecomesmaller,soTheycanbeusedinthelimitedspaceprovidedbythefactory.Forexample,inindustrialaccessories,LEDhasbecomethedominantlightsource.Itssmallsizemakesiteasytodetermineimagingparameters.Theirdurabilityandstabilityareverysuitableforfactoryequipment.
Moreintegratedproducts
Thedevelopmentofsmartcamerasheraldsthetrendofincreasingintegratedproducts.Smartcamerasintegratetheprocessor,lens,lightsource,input/outputinasingleboxDevicesandEthernet,telephonesandPDAshavepromotedthedevelopmentoffasterandcheaperreducedinstructionsetcomputers(RISC),whichmadetheemergenceofsmartcamerasandembeddedprocessorspossible.Similarly,theadvancementoffieldprogrammablegatearray(FPGA)technologyhasaddedcomputingfunctionstosmartcameras,andembeddedprocessorsandhigh-performanceframecollectorsforPCs.SmartcamerascombineFPGA,DSP,andDSPthathandlemostcomputingtasks.Themicroprocessorwillbemoreintelligent.
Prospects
Becausethemachinevisionsystemcanquicklyobtainalargeamountofinformation,itiseasytoautomaticallyprocess,anditisalsoeasytointegratewithdesigninformationandprocessingcontrolinformation.Therefore,inthemodernautomatedproductionprocess,Peopleusemachinevisionsystemsextensivelyinfieldssuchasworkingconditionmonitoring,finishedproductinspectionandqualitycontrol.
Butmachinevisiontechnologyismorecomplicated,andthebiggestdifficultyisthatthehumanvisualmechanismisnotyetclear.Peoplecanuseintrospectiontodescribetheprocessofsolvingaproblem,andthensimulateitwithacomputer.Butalthougheverynormalpersonisa"visualexpert",itisimpossibletodescribehisownvisualprocessbyintrospection.Therefore,buildingamachinevisionsystemisaverydifficulttask.
Itcanbepredictedthatwiththematurityanddevelopmentofmachinevisiontechnologyitself,itwillbemoreandmorewidelyusedinmodernandfuturemanufacturingenterprises.