Transform



Introduction

Themappingofacollectiontoitselfiscalledatransformation.Asamapping,twotransformscanbemultiplied.Agroupofseveral-transformationsunderthismultiplicationiscalledatransformationgroup.

Transformationgroup

[transformationgroup]

People'sunderstandingofgroupsbeginswithtransformationgroups.

E.Galois(E.Galois)Theruleofjudgingtheexistenceoftheradicalsolutionofapolynomialequationisthroughtheautomorphismgroup(transformationgrouponthetop)oftheresearchdomainandthetransformationgrouponthesetofrootsAndgotit.Therefore,peopleusuallyregardGaloisasthefounderofgrouptheory.

A.Cayleyputforwardtheconceptofabstractgroup,andthentherewasresearchonabstractgroup.Abasicfactisthatanygroupisisomorphictoatransformationgroup.Infact,ifGisagroupand,thentherightmultiplicationtransform,whichmapsintoaproduct,whichisasetAtransformationonG.WhengtraversesalltheelementsinG,theentirerightmultiplicationtransformationbecomesaunderthetransformationmultiplication.ItisthetransformationgrouponthesetG,andthemappingistheisomorphismofthegroupGtothetransformationgroup.

This article is from the network, does not represent the position of this station. Please indicate the origin of reprint
TOP