Introduction
Theoriginofgeneticalgorithmscanbetracedbacktotheearly1960s.In1967,Bagley,astudentofProfessorJ.HollandattheUniversityofMichiganintheUnitedStates,firstproposedthetermgeneticalgorithminhisdoctoralthesisanddiscussedtheapplicationofgeneticalgorithmingames.Thedevelopmentofcomputingtools.In1975,J.Hollandetal.proposedamodeltheorythatisextremelyimportantforthetheoreticalresearchofgeneticalgorithms.Thedevelopmentofgeneticalgorithms.Afterthe1980s,geneticalgorithmsenteredaperiodofprosperousdevelopmentandwerewidelyusedinresearchfieldssuchasautomaticcontrol,productionplanning,imageprocessing,androbotics.
Basicframework
Coding
Becausegeneticalgorithmscannotdirectlydealwiththeparametersoftheproblemspace,theproblemtobesolvedmustbeexpressedasachromosomeinthegeneticspacethroughcodingOrindividual.Thisconversionoperationiscalledencoding,anditcanalsobecalled(problem)representation.
Thefollowing3criteriaareoftenusedtoevaluatecodingstrategies:
a)Completeness:allpoints(candidatesolutions)intheproblemspacecanbeusedaspointsintheGAspace(Chromosome)performance.
b)Soundness:ThechromosomesintheGAspacecancorrespondtoallcandidatesolutionsintheproblemspace.
c)Nonredundancy(nonredundancy):Thechromosomecorrespondstothecandidatesolutiononetoone.
Fitnessfunction
Thefitnessinthetheoryofevolutionmeanstheabilityofanindividualtoadapttotheenvironmentandtheabilityoftheindividualtoreproduceoffspring.Thefitnessfunctionofthegeneticalgorithmisalsocalledtheevaluationfunction.Itisanindexusedtojudgetheprosandconsoftheindividualsinthegroup.Itisevaluatedaccordingtotheobjectivefunctionoftheproblem.
Geneticalgorithmsgenerallydonotneedotherexternalinformationinthesearchandevolutionprocess,andonlyuseevaluationfunctionstoevaluatetheprosandconsofindividualsorsolutions,andserveasthebasisforfuturegeneticoperations.Inthegeneticalgorithm,thefitnessfunctionneedstobecomparedandrankedandtheselectionprobabilityiscalculatedonthisbasis,sothevalueofthefitnessfunctionmusttakeapositivevalue.Itcanbeseenthat,inmanycases,itisnecessarytomaptheobjectivefunctionintoafitnessfunctionwithamaximumvalueandanon-negativefunctionvalue.
Thedesignofthefitnessfunctionmainlymeetsthefollowingconditions:
a)Singlevalue,continuous,non-negative,maximized
b)Reasonableandconsistent
c)Smallamountofcalculation
d)Strongversatility.
Inspecificapplications,thedesignofthefitnessfunctionshouldbecombinedwiththerequirementsofsolvingtheproblemitself.Thedesignoffitnessfunctiondirectlyaffectstheperformanceofgeneticalgorithm.
Initialpopulationselection
Inthegeneticalgorithm,theindividualsintheinitialpopulationarerandomlygenerated.Generallyspeaking,thesettingoftheinitialgroupcanadoptthefollowingstrategies:
a)Accordingtotheinherentknowledgeoftheproblem,trytograspthedistributionrangeofthespaceoccupiedbytheoptimalsolutionintheentireproblemspace,andthen,hereSettheinitialpopulationwithinthedistributionrange.
b)Firstrandomlygenerateacertainnumberofindividuals,andthenselectthebestindividualsfromthemandaddthemtotheinitialpopulation.Thisprocesscontinuestoiterateuntilthenumberofindividualsintheinitialpopulationreachesapredeterminedscale.
Operationprocess
Thebasicoperationprocessofgeneticalgorithmisasfollows:
(1)Initialization:Settheevolutionalgebracountert=0,setthemaximumevolutionalgebraT,RandomlygenerateMindividualsastheinitialpopulationP(0).
(2)Individualevaluation:CalculatethefitnessofeachindividualinthegroupP(t).
(3)Selectionoperation:Theselectionoperatorisappliedtothegroup.Thepurposeofselectionistoinherittheoptimizedindividualsdirectlytothenextgenerationortogeneratenewindividualsthroughpairingandcrossoverandtheninheritthemtothenextgeneration.Theselectionoperationisbasedontheassessmentofthefitnessoftheindividualsinthegroup.
(4)Crossoveroperation:Thecrossoveroperatorisappliedtothegroup.Thekeyroleinthegeneticalgorithmisthecrossoveroperator.
(5)Mutationoperation:Themutationoperatorisappliedtothepopulation.Thatistochangethegenevalueofsomelociintheclusterofindividualsinthepopulation.ThepopulationP(t)isselected,crossed,andmutatedtoobtainthenextgenerationpopulationP(t+1).
(6)Judgmentofterminationconditions:Ift=T,theindividualwiththemaximumfitnessobtainedintheevolutionprocessisusedastheoptimalsolutionoutput,andthecalculationisterminated.
Geneticoperationsincludethefollowingthreebasicgeneticoperators:selection;crossover;mutation.
Selection
Theoperationofselectingsuperiorindividualsfromthegroupandeliminatinginferiorindividualsiscalledselection.Selectionoperatorsaresometimescalledreproductionoperators.Thepurposeofselectionistoinherittheoptimizedindividual(orsolution)directlytothenextgenerationortogenerateanewindividualthroughpairingandcrossoverandtheninheritittothenextgeneration.Theselectionoperationisbasedonthefitnessevaluationofindividualsinthegroup.Thecommonlyusedselectionoperatorsareasfollows:fitnessratiomethod,randomtraversalsamplingmethod,andlocalselectionmethod.
Crossover
Thereorganization(plusmutation)ofbiologicalgeneticgenesplaysacentralroleintheevolutionofnaturalorganisms.Similarly,thekeyroleingeneticalgorithmsisthecrossoveroperatorofgeneticoperations.Theso-calledcrossoverreferstotheoperationofreplacingandrecombiningthepartialstructuresoftwoparentindividualstogeneratenewindividuals.Throughcrossover,thesearchabilityofgeneticalgorithmcanbegreatlyimproved.
Mutation
Thebasiccontentofthemutationoperatoristochangethegenevalueatsomelocioftheindividualstringsinthepopulation.Accordingtothedifferentrepresentationmethodsofindividualcodes,thefollowingalgorithmscanbeused:
a)Real-valuedmutation.
b)Binarymutation.
Generallyspeaking,thebasicstepsofthemutationoperatoroperationareasfollows:
a)Determinewhethertoperformmutationbasedonthepresetmutationprobabilityforallindividualsinthegroup
b)Randomlyselectthemutatedpositionforthemutatedindividualtomutate.
Geneticalgorithmintroducesmutationfortwopurposes:oneistomakegeneticalgorithmhavelocalrandomsearchability.Whenthegeneticalgorithmisclosetotheoptimalsolutionneighborhoodthroughthecrossoveroperator,thelocalrandomsearchabilityofthemutationoperatorcanacceleratetheconvergencetotheoptimalsolution.Obviously,theprobabilityofmutationinthiscaseshouldbeasmallvalue,otherwisethebuildingblocksclosetotheoptimalsolutionwillbedestroyedduetomutation.Thesecondistoenablegeneticalgorithmstomaintaingroupdiversitytopreventimmatureconvergence.Atthistime,theconvergenceprobabilityshouldtakealargervalue.
Terminationcondition
Whenthefitnessoftheoptimalindividualreachesagiventhreshold,orthefitnessoftheoptimalindividualandtheWhenthealgebraisset,thealgorithmterminates.Thepresetnumberofgenerationsisgenerallysetto100-500generations.
Features
Geneticalgorithmisageneralalgorithmforsolvingsearchproblems,whichcanbeusedforvariousgeneralproblems.Thecommonfeaturesofsearchalgorithmsare:
(1)Firstformasetofcandidatesolutions
(2)Measurethefitnessofthesecandidatesolutionsaccordingtocertainadaptabilityconditions
(3)Retainsomecandidatesolutionsbasedonfitnessanddiscardothercandidatesolutions
(4)Performcertainoperationsontheretainedcandidatesolutionstogeneratenewcandidatesolutions.
Ingeneticalgorithms,theabove-mentionedfeaturesarecombinedinaspecialway:parallelsearchbasedonchromosomegroups,selectionoperationswithguessingproperties,exchangeoperations,andmutationoperations.Thisspecialcombinationmethoddistinguishesgeneticalgorithmfromothersearchalgorithms.
Geneticalgorithmalsohasthefollowingcharacteristics:
(1)Thealgorithmstartsfromthesetofproblemsolutions,ratherthanfromasinglesolution.Thisisagreatdifferencebetweengeneticalgorithmandtraditionaloptimizationalgorithm.Traditionaloptimizationalgorithmsiterativelyfindtheoptimalsolutionfromasingleinitialvalue;itiseasytostrayintothelocaloptimalsolution.Thegeneticalgorithmstartsthesearchfromthestringset,andhasalargecoveragearea,whichisconducivetoglobalselection.
(2)Geneticalgorithmprocessesmultipleindividualsinthegroupatthesametime,thatis,evaluatesmultiplesolutionsinthesearchspace,reducingtheriskoffallingintolocaloptimalsolutions,andthealgorithmitselfiseasytoparallelize.
(3)Geneticalgorithmsbasicallydonotusesearchspaceknowledgeorotherauxiliaryinformation,butonlyusefitnessfunctionvaluestoevaluateindividuals,andperformgeneticoperationsonthisbasis.Thefitnessfunctionisnotonlynotrestrictedbycontinuousdifferentiability,butitsdomaincanbesetarbitrarily.Thisfeaturegreatlyexpandstheapplicationrangeofgeneticalgorithms.
(4)Thegeneticalgorithmdoesnotusedeterministicrules,butusesprobabilistictransitionrulestoguideitssearchdirection.
(5)Self-organization,self-adaptationandself-learning.Whenthegeneticalgorithmusestheinformationobtainedintheevolutionprocesstoorganizethesearchbyitself,individualswithgreaterfitnesshaveahighersurvivalprobabilityandobtainageneticstructurethatismoreadaptedtotheenvironment.
(6)Inaddition,thealgorithmitselfcanalsousedynamicadaptivetechnologytoautomaticallyadjustalgorithmcontrolparametersandcodingaccuracyduringtheevolutionprocess,suchasusingfuzzyadaptivemethod.
Disadvantages
(1)Thecodingisnotstandardizedandthecodingisnotaccurate.
(2)Asinglegeneticalgorithmcodecannotfullyexpresstheconstraintsoftheoptimizationproblem.Onewaytoconsiderconstraintsistousethresholdsforinfeasiblesolutions.Inthisway,thecalculationtimewillinevitablyincrease.
(3)Theefficiencyofgeneticalgorithmisgenerallylowerthanthatofothertraditionaloptimizationmethods.
(4)Geneticalgorithmstendtoconvergeprematurely.
(5)Geneticalgorithmhasnoeffectivequantitativeanalysismethodfortheaccuracy,feasibility,andcomputationalcomplexityofthealgorithm.
Application
Becausetheoverallsearchstrategyandoptimizedsearchmethodofgeneticalgorithmdonotdependongradientinformationorotherauxiliaryknowledgeincalculation,onlytheobjectivefunctionandcorrespondingThefitnessfunctionofthegeneticalgorithm,sogeneticalgorithmprovidesageneralframeworkforsolvingcomplexsystemproblems.Itdoesnotdependonthespecificfieldoftheproblem,andhasstrongrobustnesstothetypeofproblem,soitiswidelyusedinmanysciences.BelowweSomemainapplicationareasofgeneticalgorithmwillbeintroduced:
Functionoptimization
Functionoptimizationisaclassicapplicationfieldofgeneticalgorithm,anditisalsoacommonexampleofgeneticalgorithmforperformanceevaluation.ManypeopleconstructTherearevariouscomplexformsoftestfunctions:continuousfunctionanddiscretefunction,convexfunctionandconcavefunction,low-dimensionalfunctionandhigh-dimensionalfunction,unimodalfunctionandmultimodalfunction,etc.Forsomenon-linear,multi-model,multi-objectivefunctionoptimizationproblems,otheroptimizationmethodsaremoredifficulttosolve,andgeneticalgorithmscaneasilygetbetterresults.
Combinatorialoptimization
Astheproblemsizeincreases,thesearchspaceofcombinatorialoptimizationproblemsalsoincreasessharply,andsometimesitisdifficulttofindtheoptimalsolutionusingenumerationincalculations..Forsuchcomplexproblems,peoplehaverealizedthatthemainenergyshouldbefocusedonseekingsatisfactorysolutions,andgeneticalgorithmisoneofthebesttoolsforseekingsuchsatisfactorysolutions.PracticehasprovedthatgeneticalgorithmisveryeffectiveforNPproblemsincombinatorialoptimization.Forexample,geneticalgorithmhasbeensuccessfullyappliedinsolvingtravelingsalesmanproblem,knapsackproblem,packingproblem,graphpartitionproblemandsoon.
Inaddition,GAhasalsobeenwidelyusedinproductionschedulingproblems,automaticcontrol,robotics,imageprocessing,artificiallife,geneticcoding,andmachinelearning.
Workshopscheduling
TheproblemofworkshopschedulingisatypicalNP-Hardproblem.Asaclassicintelligentalgorithm,geneticalgorithmiswidelyusedinworkshopscheduling.ManyscholarsarecommittedtousingThegeneticalgorithmsolvestheproblemofworkshopschedulingandhasachievedveryfruitfulresultstoday.Fromtheoriginaltraditionaljobshopscheduling(JSP)problemtotheflexiblejobshopschedulingproblem(FJSP),geneticalgorithmshaveexcellentperformanceandhaveobtainedoptimalornear-optimalsolutionsinmanyexamples.