Character'slife
Youth
AlanMathisonTuring,WasbornonJune23,1912inLondon,England.AlanMathisonTuringshowedauniqueinstinctandcreativityandaloveformathematicswhenhewasateenager.
In1926,TuringwasadmittedtoLondon'sfamousSherborne(Sherborne)publicschooltostudyandreceivedagoodsecondaryeducation.Heshowedgreatinterestinnaturalsciencesandakeenmathematicalmindduringhismiddleschool.
Attheendof1927,inordertohelphismotherunderstandEinstein’stheoryofrelativity,Turing,whowasonly15yearsold,wroteasummaryofEinstein’swork,showingthathehasextraordinarymathematicsLevelandscientificunderstanding.
Turing’sinterestinnaturalsciencesmadehimtwicein1930and1931towintheNaturalSciencePrizesetupbytheparentsofoneofhisclassmates,Mocomb,andtherewasapapertitled"Thereactionofsulfitesandhalidesinacidicsolutions”waspraisedbytheinspectorsentbythegovernment.Hisinterestinnaturalsciencelaidthefoundationforsomeofhislaterresearch.Hismathematicsabilityenabledhimtogaintheexperienceinmiddleschool.KingEdwardVIGoldenShieldMedalinMathematics.
Scientificresearchperiod
In1931,TuringwasadmittedtoKing'sCollege,CambridgeUniversity,andwasawardedamathematicsscholarshipforhisexcellentgrades.InCambridge,hismathematicalabilitywasfullydeveloped.
In1935,hisfirstmathematicalpaper"TheEquivalenceofRightandLeftAlmostPeriodicity"waspublishedintheJournaloftheLondonMathematicalSociety.Inthesameyear,healsowrote"OntheGaussianErrorFunction".ThisdissertationenabledhimtobedirectlyelectedbyauniversitystudentasaresearcheratKing'sCollege,andinthefollowingyearhewonthefamousBritishSmith(Smith)MathematicsPrize,becomingoneoftheprestigiousgraduatesofKing'sCollege.
InMay1936,TuringsubmittedapapertotheprestigiousLondonmathematicsmagazineentitled"OntheApplicationofNumericalCalculationsinDecision-MakingProblems".Afterthearticlewaspublishedinthe42ndissueofthe"LondonMathematicalSociety"in1937,itimmediatelyattractedwidespreadattention.Intheappendixofthepaper,hedescribedamachinethatcanassistinmathematicalresearch,whichwaslatercalleda"Turingmachine".Themostrevolutionaryaspectofthisideaisthatitwasusedforthefirsttimeinpuremathematicalsymboliclogicandthephysicalworld.Aconnectionwasestablishedbetweenthem,andthecomputerswelaterbecamefamiliarwith,andthe"artificialintelligence"thathasnotyetbeenrealized,areallbasedonthisidea.Thisisthefirstimportantessayinhislifeandhisfamouswork.
In1937,anotherarticle"ComputabilityandλDefinability"publishedbyTuringbroadenedthe"Churchargument"putforwardbyChurchandformedthe"Church-Turingthesis",therigorofcomputingtheory,hasafoundationalsignificancefortheformationanddevelopmentofcomputerscience.
InSeptember1936,TuringwasinvitedtostudyatthePrincetonInstituteforAdvancedStudyandworkwithChurch.
DuringhisstayintheUnitedStates,hedidsomeresearchongrouptheoryandwroteadoctoraldissertation.HereceivedhisPh.D.degreefromPrincetonin1938.Histhesiswastitled"LogicalSystemBasedonOrdinalNumbers".Itwasformallypublishedin1939,whichhadaprofoundinfluenceontheresearchofmathematicallogic.
Inthesummerof1938,TuringreturnedtoEnglandandwasstillaresearcheratKing’sCollege,CambridgeUniversity,wherehecontinuedtostudymathematicallogicandcomputationaltheory,andatthesametimebeganthedevelopmentofcomputers.
WorldWarIIexperience
TheSecondWorldWarinterruptedTuring’snormalresearchwork.Intheautumnof1939,hewassummonedtotheBritishMinistryofForeignAffairsCommunicationsOfficeformilitarywork,mainlydecipheringTheworkoftheenemycipher.Duetotheneedofdecipheringwork,heparticipatedinthedevelopmentoftheworld'sfirstelectroniccomputer.Hisworkhasachievedexcellentresults,andin1945hewonthegovernment'shighestaward-theBritishEmpireMedalofHonor(O.B.E.Medal).
In1945,TuringendedhisworkintheMinistryofForeignAffairs.Hetriedtoresumetheresearchintheoreticalcomputersciencebeforethewar,andcombinedhisworkduringthewartodevelopanewcomputer.Thisideaissupportedbytheauthorities.Inthesameyear,TuringwashiredasaresearcherattheNationalInstituteofPhysicsinTeddington,andbegantoengageinthelogicaldesignandspecificdevelopmentofthe"automaticcomputer"(ACE)Work.Thisyear,Turingwrotea50-pagedesignspecificationaboutACE.Thisspecificationwasofficiallypublishedin1972afterbeingkeptsecretfor27years.UndertheguidanceofTuring'sdesignideas,theACEprototypewasproducedin1950,andalargeACEmachinewasproducedin1958.Itisbelievedthattheconceptofgeneral-purposecomputerwasproposedbyTuring.
From1945to1948,heworkedattheBritishNationalPhysicsLaboratoryandwasresponsiblefortheresearchofautomaticcalculationengines.
InAugust1946,Turingparticipatedinhisfirstraceafterformalrunningtraining.Thatwasthe3mile(4.8kilometers)raceheparticipatedinafterjoiningtheWaltonAthleticsClub.Turingwonthefirstplacein15minutesand37seconds,whichwasrankedfirstintheUKthatyear.20bits.
In1947,attheBritishAmateurAthleticsAssociationMarathonChampionshipheldattheUniversityStadiuminLoughborough,Leicestershire,TuringranoutofhismarathonPersonalbesttimeof2hours46minutesand03seconds,rankedfifthinthatgame.
In1948,TuringacceptedthepostofseniorlecturerattheUniversityofManchester,andwasappointedastheassistanttothepersoninchargeoftheManchesterAutomaticDigitalComputer(Madam)project.Summaryofwork.
In1949,hebecamethedeputydirectoroftheComputerLaboratoryoftheUniversityofManchester,responsibleforthesoftwaretheorydevelopmentoftheearliestrealcomputer-"ManchesterOne",sohebecamethefirstpersonintheworldtousecomputersinpractice.Ascientistwhostudiesmathematics.
In1950,Turingwroteandpublished"Theprogrammers’handbookfortheManchesterelectroniccomputer"(Theprogrammers’handbookfortheManchesterelectroniccomputer).Duringthisperiod,hecontinuedtoconducttheoreticalresearchonmathematicallogic.Andputforwardthefamous"TuringTest".Inthesameyear,heraisedthequestionaboutmachinethinking.Hispaper"ComputerandIntelligence(ComputingmachieryandIntelligence),attractedwidespreadattentionandfar-reachinginfluence.InOctober1950,Turingpublishedthepaper"CanMachinesThink".Thisepoch-makingworkearnedTuringthetitleof"FatherofArtificialIntelligence".
In1951,duetohisachievementsincomputablenumbers,hebecameaBritishRoyalMemberoftheSociety,attheageof39.
In1952,heresignedasaresearcheratKing’sCollege,CambridgeUniversityanddevotedhimselftoworkingattheUniversityofManchester.Inadditiontohisdailyworkandresearchwork,healsosupervisedsomedoctoralstudents.IalsoservedasaconsultantforFranti,acompanythatmakesManchester’sautomaticdigitalcomputers.
In1952,Turingwroteachessprogram.However,nocomputerhadenoughcomputingpoweratthetime.Ifhewasabletoexecutethisprogram,heimitatedthecomputer,andeachsteptookhalfanhour.Heplayedagamewithacolleague,andtheprogramfailed.Later,theresearchgroupofLosAlamosNationalLaboratoryinNewMexico,USA,accordingtothepictureLing’stheory,designedtheworld’sfirstcomputer-programmedchessonMANIAC.
Diedafterbeingpersecuted
In1952,Turing’ssame-sexpartnercollaboratedwithanaccompliceHebrokeintoTuring’shouseandcarriedoutthetheft.Turingcalledthepoliceforthis.However,thepoliceinvestigationresultedinhimbeingchargedwith"obviousindecencyandsexualreversal"(homosexuality).Hedidnotplead,Andwasconvicted.Afterthefamouspublictrial,hewasgiventwochoices:imprisonmentorhormonetherapy.Hechosehormonalinjectionsandlastedforayear.Duringthistime,thedrugproducedthecontinuousdevelopmentofbreasts.Sideeffects.
OnJune7,1954,Turingwasfounddeadonthebedathome,withabiteofacyanide-soakedappleonthebedside.ThepoliceinvestigationbelievesittobeadramaPoisonouscyanidepoisoning,andtheinvestigationconcludedthathecommittedsuicide.Turingwas41yearsoldatthetime.
Formallyrehabilitated
In2009,BritishcomputerscientistKangMing(JohnGraham-Cumming)InitiatedanonlinepetitiontorehabilitateTuring.AsofSeptember10,2009,thenumberofsignaturesinthepetitionhadexceeded30,000.Forthisreason,thethenBritishgovernmentandPrimeMinisterGordonBrownhadtoissueanofficialapology.
December2012,Hawking,(PaulNurse,NobelPrizewinnerinmedicine),(MartinRees,PresidentoftheRoyalSociety)i>ElevenimportantpersonsincludingtheBritishPrimeMinisterCameronsentalettertotheBritishPrimeMinisterCameron,requestingthatheberehabilitated.
OnDecember24,2013,attherequestofBritishMinisterofJusticeChrisGrayling(ChrisGrayling)Begging,theQueenofEnglandfinallyissuedaroyalpardontoTuring.TheBritishAttorneyGeneralannouncedthat“Turing’slaterlifewasforcedtocastashadowbecauseofhishomosexuality.Webelievethattheverdictatthattimewasunfair,andthisdiscriminationhasnowbeenabolished.Tothisend,theQueendecidedGiveapardontothisgreatmanasatributetohim."
MainAchievements
Turinghassomeofhisscientificachievementsinscience,especiallyinmathematicallogicandcomputerscience.,Whichconstitutesthebasisofmoderncomputertechnology.
ComputabilityTheory
Calculationcanbesaidtobethefirstmathematicalsubjectencounteredbymankind,andhasbecomeanindispensabletoolinpeople’ssociallifeinthelonghistory..So,whatiscalculation?Intuitively,calculationgenerallyreferstotheprocessoftransformingasetofvaluesintoanother(required)valuebyapplyingpredeterminedrules.Foracertaintypeofproblem,ifacertainsetofrulescanbefound,accordingtothissetofrules,whenanyspecificproblemofthistypeofproblemisgiven,theresultcanbeobtainedcompletelymechanicallyinafinitestep.Classproblemsarecomputable.Thiskindofruleisanalgorithm,andthiskindofcomputableproblemcanalsobecalledaproblemwithanalgorithm.Thisistheintuitiveconceptofcomputabilityoralgorithmcomputability.
Beforethe20thcentury,itwasgenerallybelievedthatallproblemclasseshadalgorithms,andpeople’scomputationalresearchwastofindoutalgorithms.Itseemsthatjusttoprovethatallscientificpropositions,atleastallmathematicalpropositions,existalgorithms,Leibnizpioneeredtheresearchofmathematicallogic.Butatthebeginningofthe20thcentury,peoplediscoveredthatmanyproblemshavebeenstudiedforalongtime,andstillcan'tfindthealgorithm,suchasHilbert'stenthproblem,theproblemofsemigroupcharactersandsoon.Sopeoplebegantowonderwhethertherearenoalgorithmsfortheseproblems,thatis,theyarenotcomputable.Ofcourse,thisnon-existenceneedstobeproved.Atthistime,peoplediscoveredthatthereisnoprecisedefinitionforeitherthealgorithmorthecomputability!Accordingtotheaforementionedstatementofintuitivecomputability,itisimpossibletoprovethatthereisnoalgorithmatall,becausewhatdoes"completelymechanical"mean?Whatdo"determinedrules"mean?Itisstillunclear.Infact,thereisnocleardefinitionnorcanitbeabstractlyprovedthatthereisanalgorithmforacertaintypeofproblem.However,theexistenceofanalgorithmisgenerallyconfirmedbyconstructinganalgorithm,sotheprecisedefinitionofthealgorithmmaynotbeinvolved.
Theneedtosolvetheproblempromptspeopletocontinuetoexplore.In1934,GodelputforwardtheconceptofgeneralrecursivefunctionundertheenlightenmentofHerbrand,andpointedoutthatallalgorithmiccomputablefunctionsaregeneralrecursivefunctions,andviceversa.In1936,Kleene(Kleene)madeitmoreconcrete.Therefore,thegeneralrecursivefunctiondefinitionofthealgorithmiccomputablefunctionwaslatercalledtheElbron-Gödel-Krinidefinition.Inthesameyear,Churchprovedthattheλdefinablefunctionheproposedisequivalenttothegeneralrecursivefunction,andproposedthatthealgorithmiccomputablefunctionisequivalenttothegeneralrecursivefunctionorλdefinablefunction.Thisisthefamous"Churchargument".
Althoughageneralrecursivefunctionisusedtogiveastrictmathematicaldefinitionofacomputablefunction,inthespecificcalculationprocess,intermsofacertainstepofoperation,thereisstilluncertaintyaboutwhatinitialfunctionandbasicoperationtochoose.Inordertoeliminatealluncertainties,Turingdefinedthecomputablefunctionfromanewperspectiveinhisarticle"OnComputableNumbersandItsApplicationinDecisionProblems".Hecomprehensivelyanalyzedthecalculationprocessofpeople,andreducedthecalculationtothesimplest,mostbasic,andmostcertainoperationaction,soastouseasimplemethodtodescribethebasiccalculationprogramthatisintuitiveandmechanical,sothatanymachine(Anyprogramthatworks)canbereducedtotheseactions.Thissimplemethodisbasedontheconceptofanabstractautomaton,andtheresultisthatthealgorithmiccomputablefunctionisthefunctioncalculatedbythisautomaton.Thisnotonlygaveacompletelydefinitedefinitionofcomputing,butalsoconnectedcomputingandautomataforthefirsttime,whichhadahugeimpactonlatergenerations.Thiskindof"automata"waslatercalleda"Turingmachine".
TheTuringmachineisamathematicalmodelofanautomaton.Itisapapertapewithtwoends(oroneend)infinitelyextended.Itisdividedintosquares,andeachsquarecanbeprintedwithacertainalphabet.Aletterin(canalsobeaspace,denotedasS0);thereisalsoaread-writehead,whichhasalimitednumberofinternalstates.Atanytime,theread-writeheadlooksatacertainsquareonthepapertape,andexecutestheactionspecifiedbytheconversionruleaccordingtothecontentofthewatchedsquareandtheinternalstateoftheread-writeheadatthattime.EachTuringmachinehasasetoftransformationrules,theyhaveoneofthefollowingthreeshapes:
qiaRqi,qiaLqi,qiabqj
means:whentheread/writeheadisinstateqi,ifIfthecontentofthegazeboxislettera,thereadingheadwillmoveoneboxtotheright,ormoveoneboxtotheleft,orprinttheletterb(thatis,changethecontentofthegazeboxfromatob.a,bcanbeS0).
TuringdefinesacomputablefunctionasaTuringmachinecomputablefunction.In1937,TuringprovedthatTuringmachinecomputablefunctionandλdefinablefunctionareequivalentinhisarticle"Computabilityandλdefinability",thusbroadeningChurch'sargumentandderiving:Algorithm(Yes)ComputablefunctionsareequivalenttogeneralrecursivefunctionsorλdefinablefunctionsorTuringmachinecomputablefunctions.Thisisthe"Church-Turingthesis",whichperfectlysolvestheproblemoftheprecisedefinitionofcomputablefunctionsandgreatlypromotesthedevelopmentofmathematicallogic.
TheconceptofaTuringmachinehasaveryuniquemeaning:iftheinternalstateoftheTuringmachineisinterpretedasinstructions,expressedinalphabeticwords,andstoredinthemachineasoutputwordsandinputwords,thenBecomeanelectroniccomputer.Asaresult,thesubjectbranchof"automata"wascreated,whichpromotedtheresearchanddevelopmentofelectroniccomputers.
Atthesametime,Turingalsoproposedtheconceptofageneral-purposeTuringmachine,whichisequivalenttotheinterpreterprogramofageneral-purposecomputer.Thisdirectlypromotedthedesignanddevelopmentofgeneral-purposecomputers.TuringhimselfparticipatedDidthisjob.
WhilegivingageneralTuringmachine,TuringpointedoutthatwhencalculatingageneralTuringmachine,its"mechanicalcomplexity"hasacriticallimit.Ifthislimitisexceeded,itisnecessarytorelyonIncreasethelengthoftheprogramandtheamountofstoragetosolve.Thiskindofthinkingopeneduptheprecedentofcomputationalcomplexitytheoryincomputerscience.
Judgingtheproblem
Theso-called"decisionproblem"referstodeterminingwhethertheso-called"largenumberofproblems"hasanalgorithmicsolution,orwhetherthereisafeasiblemethodtomakeeachspecialcaseoftheproblemclassItcanbedeterminedmechanicallyinalimitednumberofstepswhetherithasacertainproperty(suchaswhetheritistrue,whetheritissatisfied,whetherthereisasolution,etc.,dependingonthenatureofalargenumberofproblems).
Thedeterminationproblemiscloselyrelatedtothecalculabilityproblem,andthetwocanbemutuallydefined:ifacertaintypeofproblemcanbefoundtodeterminewhetherithasacertainproperty,thenthistypeofproblemiscalledCanbedeterminedorsolvable;otherwiseitisundecidableorunsolvable.Thereisadifferencebetweenthetwo:thejudgmentproblemistodeterminewhetherthereisanalgorithmsothateachspecialcaseofatypeofproblemcangivea"yes"or"no"answertoacertainproperty;theproblemofcomputabilityItistofindanalgorithmtofindsomespecificobjects.
Turing’smajorachievementinthedecisionproblemistousetheTuringmachine’s"haltingproblem"asthebasisforstudyingmanydecisionproblems.Generally,adecisionproblemisreducedtoahaltingproblem:"IfproblemAcanbeIfitisjudged,thentheshutdownproblemcanbedetermined.”Thus,the“problemAisundecidable”isderivedfrom“theshutdownproblemisundecidable”.
Theso-calledshutdownmeansthattheTuringmachinereachesaresultstate,astatenotontheinstructionlist,orasymbolduality,whichleadstotheterminationofthecalculation.Ateachmoment,thestateofthemachine,allthegridswithsymbolsonthepapertape,andthegridpositionthemachineiscurrentlylookingatarecollectivelyreferredtoasthelayoutofthemachine.Startingfromtheinitialpattern,Turingmachinetransformstheinitialpatternintoasequenceofpatternsstepbystepaccordingtotheprocedure.Thisprocessmaycontinuewithoutrestriction,oritmaystopwhenitencountersastate,acombinationofsymbolsthatisnotlistedintheinstructiontable,orentersanendstate.Thepatternreachedbytheshutdownintheendstateisthefinalpattern,andthisfinalpattern(ifany)containsthecalculationresultofthemachine.Theso-calledshutdownproblemis:IsthereanalgorithmthatcandeterminewhetheranyinitialpatternwillcauseshutdownforanygivenTuringmachine?Turingprovedthatsuchanalgorithmdoesnotexist,thatis,thehaltingproblemisundecidable,makingitthebasisforsolvingmanyundecidableproblems.
In1937,TuringusedhismethodtosolvethefamousHilbertdecisionproblem:thejudgmentproblemofthesatisfiabilityofthenarrowpredicatecalculus(alsoknownasfirst-orderlogic)formula.Heusedtheformulasinfirst-orderlogictoencodetheTuringmachine,andthenderivedtheundecidabilityofthefirst-orderlogicfromtheundecidabilityoftheTuringmachine'shaltingproblem.The"codingmethod"heinventedherebecameoneofthemainmethodsthatpeoplelaterprovedtheundecidabilityofformulasinfirst-orderlogic.
Ontheissueofjudgment,anotherachievementofTuringistheconceptofTuringmachinewithexternalinformationsourceproposedin1939,andfromthis,theconceptof"Turingreducibility"andrelativerecursionisderived.Usingtheconceptsofreductionandrelativerecursion,thedegreeofundecidabilityandnon-recursioncanbecompared.Onthisbasis,E.Postputforwardtheimportantconceptofunsolvability,andtheworkinthisareahasmadesignificantprogresslater.
&Dictionary,whetherthereisanalgorithmthatcandeterminewhethertwoarbitrarilygivenwordsareequivalent[givenafinitenumberofdifferentsymbolscalledletters,thenthealphabetisgiven,andthefinitesequenceoflettersiscalledthealphabetontheCharacter.Thefinitepairofwords(A1,B1),...,(An,Bn)iscalledadictionary.IfthetwowordsRandScanbetransformedintoeachotherafterusingafinitenumberofdictionaries,theyaresaidtobeequivalent]In1947,PostandA.A.MarkovusedTuring'scodingmethodtoprovethatthisproblemisundecidable.In1950,Turingfurtherprovedthattheproblemofsemigroupcharactersthatsatisfiesthelawofeliminationisalsoundecidable.ElectronicComputer
Turing’sworkofdecryptionduringWorldWarIIinvolvedthedesignanddevelopmentofelectroniccomputers,butthisworkisstrictlyconfidential.Itwasn'tuntilthe1970sthattheinsidestorywasrevealed.Judgingfromsomedocuments,itisverylikelythattheworld’sfirstelectroniccomputerwasnotENIAC,butanothermachinerelatedtoTuring.)Machine,thedesignofthismachineadoptscertainconceptsproposedbyTuring.Ituses1500electrontubes,usesaphotocellreader;usesperforatedpapertapeforinput;andusesatubebistablecircuittoperformcounting,binaryarithmeticandBooleanalgebraiclogicoperations.Thegiantmachineproducedatotalof10units,usingthemExcellentcompletionofthecodedecipheringwork.
Afterthewar,TuringworkedattheTeddingtonNationalPhysicalLaboratoryandbegantoworkonthelogicdesignandspecificdevelopmentofthe"AutomaticComputingEngine".In1946,Turingpublishedapaperexpoundingthedesignofastoredprogramcomputer.HisachievementsarethesameasJohnvonNeumannwhostudiedtheElectronicDiscreteVariableAutomaticComputer(ElectronicDiscreteVariableAutomaticComputer).BothTuring'sautomaticcomputerandNeumann'sdiscretevariableautomaticelectroniccomputerusebinarysystems,andbothuse"memorytostoreprogramstorunthecomputer"tobreaktheoldconceptofthatera.
ArtificialIntelligence
In1949,TuringbecametheAssociateDeanoftheUniversityofManchesterComputingLaboratory,dedicatedtothedevelopmentandoperationoftheManchesterMark1modelstorageprogramThesoftwarerequiredbythecomputer.In1950,hepublishedthepaper"ComputerMachineryandIntelligence"(ComputingMachineryandIntelligence),whichprovidedgroundbreakingideasforlaterartificialintelligencescience.Putforwardthefamous"TuringTest",pointingoutthatifathirdpartycannotdistinguishthedifferencebetweentheresponsesofhumanbeingsandartificialintelligencemachines,itcanbeconcludedthatthemachinehasartificialintelligence.
In1956,Turing'sarticlewasrepublishedunderthetitle"Canmachinesthink?".Atthistime,artificialintelligencehasalsoenteredthestageofpracticaldevelopment.Turing'smachineintelligencethoughtisundoubtedlyoneofthedirectoriginsofartificialintelligence.Andwiththein-depthresearchinthefieldofartificialintelligence,peoplehavebecomemoreandmoreawareoftheprofoundnessofTuring'sthoughts:theyarestilloneofthemainideasofartificialintelligencetoday.
MathematicalBiology
From1952untilhisdeath,Turinghasbeendoingresearchinmathematicalbiology.Hepublishedapaper"TheChemicalBasisofMorphogenesis"in1952.HismaininterestistheFibonaccileafsequence,theFibonaccinumberthatexistsinthestructureofplants.Heappliedthereaction-diffusionformula,whichhasnowbecomethecoreofthepatternformationcategory.Noneofhislaterpaperswerepublished,anditwasnotuntilthepublicationofAlanTuring'sSelectedWorksin1992thatthesearticlesappeared.
TuringTest
From1945to1948,Turingwasinchargeoftheautomaticcalculationengine(ACE)attheNationalPhysicalLaboratory.In1949,hebecamethedeputydirectoroftheComputerLaboratoryattheUniversityofManchester,responsibleforthesoftwareworkofthefirstrealcomputer,ManchesterOne.Duringthistime,hecontinuedtodosomemoreabstractresearch,suchas"computingmachineryandintelligence".Inhisresearchonartificialintelligence,TuringproposedanexperimentcalledtheTuringtesttotrytodetermineastandardfordeterminingwhetheramachinehasfeelings.
TheTuringtestconsistsofacomputer,apersontobetested,andapersoninchargeofthetest.Thecomputerandthepersonbeingtestedareintwodifferentrooms.Duringthetestingprocess,thehostwillaskquestions,andthecomputerandthetestedpersonwillanswerseparately.Observerscancommunicatewithmachinesandpeoplethroughteletypewriters(avoidrequiringmachinestosimulatehumanappearanceandvoice).Whenansweringquestions,thetesteeshowsasmuchaspossiblethatheisa"real"person,andthecomputerwillalsoimitatehumanthinkingandthinkingprocessesasrealisticallyaspossible.Ifafterlisteningtotheirrespectiveanswers,thetesthostcan'ttellwhichisansweredbyhumanandwhichisansweredbymachine,thenthecomputercanbeconsideredtobeintelligent.Thisexperimentmayberecognizedbymostpeople,butitcannotsatisfyallphilosophers.AlthoughtheTuringtestvividlydepictsthesimulationrelationshipbetweencomputerintelligenceandhumanintelligence,theTuringtestisstillaone-sidedtest.Amachinethathaspassedthetestcanofcoursebeconsideredintelligent,butamachinethathasnotpassedthetestcanstillbeconsideredintelligentbecauseithasinsufficientknowledgeofhumansandcannotsimulatehumans.TheTuringtesthasseveralpointsworthyofscrutiny.Forexample,thetesthost’scriteriaforaskingquestionsarenotclearlygiveninthetest;thesubject’sownintelligencelevel,theTuringtestisalsoneglected;andtheTuringtestItonlyemphasizestheresultsoftheexperiment,butdoesnotreflectthethoughtprocessofintelligence.Therefore,theTuringteststillcannotcompletelysolvetheproblemofmachineintelligence.Forexample:thequestionercansay:"IheardthatarhinoceroswasflyingalongtheMississippiRiverinapinkballooninthemorning.Whatdoyouthink?"(Youcanimaginethecoldsweatontheshouldersofthecomputer:)ThecomputermayAnsweredcautiously:"Isoundsincredible,"sofarthereisnothingwrong.Thequestioneraskedagain:"Really?Myuncletrieditonce,downstreamandupstream.It'sjustlight-coloredwithmarkings.What'sincredibleaboutthis?"It'seasytoimagineifacomputerWithoutproper"understanding",youwillquicklyexposeyourself.Whenansweringthefirstquestion,thecomputer'smemorybankthinksverypowerfullythatrhinosdonothavewings,andtheycanevenunintentionallyget"Rhinoceroscan'tfly",oranswerthisway.Thesecondquestionis"therhinohasnomarkings."Thenexttimethequestionercantestthereallymeaninglessquestion.Forexample,changeitto"belowtheMississippiRiver"or"outsideapinkballoon".Or"wearapinkdress"andseeifthecomputerfeelstherealdifference.Infact,itistoomuchtorequireacomputertoimitatehumanssocloselythatitcannotbedistinguishedfromaperson.Someexpertsbelievethatweshouldnotaimattheabilityofcomputerstothink,butaimattheextenttowhichwecanimitatehumanthinking;then,letthedesignerworktowardsthisgoal.In1952,Turingwroteachessprogram.However,atthattime,nocomputerhadenoughcomputingpowertoexecutethisprogram.Heimitatedthecomputerandtookhalfanhourforeachstep.Heplayedagamewithacolleague,andtheprogramlost.Later,theresearchgroupofLosAlamosNationalLaboratoryinNewMexico,USA,basedonTuring'stheory,designedtheworld'sfirstcomputer-programmedchessonMANIAC.
Characterevaluation
Turingisnotonlyfamousfordecipheringpasswords,healsomadeimportantcontributionsinthefieldsofartificialintelligenceandcomputers,andheisoftenregardedasamoderncomputerscienceFounder.Afterthewar,heworkedattheUniversityofManchesteranddevelopedthe"ManchesterMarkOne"-oneofthefamousmoderncomputers.In1999,hewasselectedbyTimemagazineasoneofthe100mostimportantfiguresofthe20thcentury.
2012isthecentennialbirthdayofagreatman.Evenifwededicateallournoblecomplimentstohim,itcannotbeoverstated.HeisAlanTuring.100yearsago,AlanTuringwasborninanerainwhichthecultureandtechnologicallevelarecompletelydifferentfromthoseoftoday,butthisdoesnotpreventhimfrombecomingoneoftoday'sgreatestandmemorablepeople.Helaidanindeliblefoundationforthecomputerfield.Withouthim,therewouldbenocomputerstoday.(TuringAwardRecipient,GoogleSeniorVicePresidentandChiefInternetExpertWentCerfevaluation)
TuringplayedakeyroleincrackingtheGermanarmycodesofWorldWarIIandsavingthecountry.Hewasan"amazingman".(PrimeMinisteroftheUnitedKingdomCameronevaluation)
Aweirdgaywhodoesn’tbelieveinGod,abrilliantBritishmathematicsHome,twobighatstangledTuringtightly.However,hehastwogreathistoricalmissions,oneisthemostpoeticconceptsandtheoriesincomputerscience,andtheotheristosolvethemysteryforworldpeaceduringtheSecondWorldWar.(Theauthorof"GödelEscherBach"andtheevaluationofartificialintelligenceexpertDouglasHofstadter)
Mainhonors
1926,TuringwasadmittedtothefamousBritishSherburneCollege,andwontheKingEdwardVI'sGoldenShieldofMathematicsinmiddleschool.
In1932,hewonthefamousBritishSmithPrizeinMathematics.
In1946,duetohisgreatcontributiontodecipheringGermancodesinWorldWarII,hewasawardedthe"BritishEmpireMedal",whichisthehighesthonorawardedbytheBritishRoyalFamilytothosewhohavemadegreatcontributionstothecountryandpeople.
Relatives
ThreeofthefamilymemberswereelectedmembersoftheRoyalSociety,andhisgrandfatheralsoreceivedanhonorarydegreeinmathematicsfromCambridgeUniversity.
Turing'sfatherJuliusMathisonTuring(JuliusMathisonTuring)studiedintheHistoryDepartmentofKopastiCollege,OxfordUniversityinhisearlyyears.SenttoIndiaasanofficialoftheMinistryofCivilAffairs.
Turing'smother,E·S·Stoney,wasborninafamilyofrailwayengineersandstudiedattheFacultyofArtsandSciencesattheUniversityofParis.Turingwasthesecondson.
CommemorationofLaterGenerations
TuringAward
Tocommemoratehisgreatcontributiontocomputerscience,theAmericanComputerSociety(ACM)TheannualTuringPrizewasestablishedin1966torecognizethosewhohavemadeoutstandingcontributionsincomputerscience.TheTuringPrizeisknownasthe"NobelPrizeinComputerScience."
ThePrimeMinisterapologizes
Overtheyears,famousscientistsincludingHawkinghavecontinuouslyurgedtheBritishgovernmenttoamnestythis"oneofthemostoutstandingmodernmathematicians."
OntheeveningofSeptember11,2009,onbehalfoftheBritishgovernment,BritishPrimeMinisterBrownmadeaclearstatementtothefamousBritishmathematicianandGermancryptographerAlanMathisonTuring,whohaspassedawayfor55years.Apologize.ThecodebreakerduringWorldWarIIwasconvictedof"chemicalcastration"forhomosexualityandcommittedsuicidein1954.
BrownsaidthatTuring’streatmentwas“horrifying”and“completelyunfair”,andBritain’sdebttothisoutstandingmathematicianwashuge.Brownsaidhewasproudtomakeaformalapology."Youhavenotbeentreatedbetter,andwearedeeplysorry."ThestatementsignedbyBrownwaspostedonthewebsiteofNo.10DowningStreet.
Queen'spardon
OnDecember24,2013,QueenElizabethIIoftheUnitedKingdomsignedapardonforTuring,whichwasclassifiedas"seriouslyobscene",andittookeffectimmediately.SecretaryofJusticeChrisGraylingsaidTuringshouldbedeservedly"rememberedandrecognizedforhisunparalleledcontributiontothewar",ratherthancriminalizinghimlater.InAugust2013,theQueenofficiallyannouncedthepardonofTuring.
Britishintelligenceagenciesapologize
OnApril16,2016,oneofthethreemajorintelligenceagenciesintheUK-GovernmentCommunicationsHeadquarters(GCHQ)RobertHannigan(RobertHannigan)Itwasstatedatthemeetingthattheintelligenceagencyapologizedforthewrongtreatmentofthe"fatherofartificialintelligence"AlanMathisonTuringinthe1950s.
HannigansaidthatthegovernmentcommunicationsheadquarterstreatedTuringandothergeniuseswrongly:"Theyaretortured,itisourloss,butalsothelossofthecountry.Weshouldapologizeforthis."
CentennialAnniversary
OnJune15-16,2012,33TuringAwardwinnersgatheredforthefirsttimeinSanFranciscotocommemorateAlanTuring’s100thbirthday.TogethertheyreviewedTuring'sgreatcontributionsandthedevelopmentofcomputerscienceinthepastfewdecades,andtalkedfreelyaboutthinkingaboutthefuture.
UK£50
OnJuly15,2019,theGovernoroftheBankofEnglandMarkCarneyshowedoffthenewversionofthe£50banknote,andAlanTuringboardedtheUK£50newBanknotes.TheBritishBroadcastingCorporation(BBC)statedthatthenewbanknoteswithafacevalueof£50willentercirculationattheendof2021.
Artisticimage
Literaryworks
"AlanTuringBiography"waswrittenbyBritishwriterAndrewHodgesandhasbeenpublishedbyHunanScienceandTechnologyPublishedinDecember2012,itisrecognizedasthemostauthoritativebiographyofTuring.TheauthorAndrewHodgesisamathematicianatOxfordUniversityandahomosexual.HecollectedalotofhistoricalmaterialsandwrotethisTuringbiography.
Filmandtelevisionimage
2014basedonAndrewHodges’sbiography"AlanTuringBiography"adaptedintothefilm"ImitationGame"andwonthe87thin2015OscarforBestAdaptedScreenplay,theactorwhoplayedTuringwasBenedictCumberbatch.