Home технология Alan Mathison Turing

Alan Mathison Turing



ThesynonymAlanTuringgenerallyreferstoAlanMathisonTuring

Character'slife

Youth

AlanMathisonTuring,WasbornonJune23,1912inLondon,England.AlanMathisonTuringshowedauniqueinstinctandcreativityandaloveformathematicswhenhewasateenager.

In1926,TuringwasadmittedtoLondon'sfamousSherborne(Sherborne)publicschooltostudyandreceivedagoodsecondaryeducation.Heshowedgreatinterestinnaturalsciencesandakeenmathematicalmindduringhismiddleschool.

Attheendof1927,inordertohelphismotherunderstandEinstein’stheoryofrelativity,Turing,whowasonly15yearsold,wroteasummaryofEinstein’swork,showingthathehasextraordinarymathematicsLevelandscientificunderstanding.

Turing’sinterestinnaturalsciencesmadehimtwicein1930and1931towintheNaturalSciencePrizesetupbytheparentsofoneofhisclassmates,Mocomb,andtherewasapapertitled"Thereactionofsulfitesandhalidesinacidicsolutions”waspraisedbytheinspectorsentbythegovernment.Hisinterestinnaturalsciencelaidthefoundationforsomeofhislaterresearch.Hismathematicsabilityenabledhimtogaintheexperienceinmiddleschool.KingEdwardVIGoldenShieldMedalinMathematics.

Scientificresearchperiod

In1931,TuringwasadmittedtoKing'sCollege,CambridgeUniversity,andwasawardedamathematicsscholarshipforhisexcellentgrades.InCambridge,hismathematicalabilitywasfullydeveloped.

In1935,hisfirstmathematicalpaper"TheEquivalenceofRightandLeftAlmostPeriodicity"waspublishedintheJournaloftheLondonMathematicalSociety.Inthesameyear,healsowrote"OntheGaussianErrorFunction".ThisdissertationenabledhimtobedirectlyelectedbyauniversitystudentasaresearcheratKing'sCollege,andinthefollowingyearhewonthefamousBritishSmith(Smith)MathematicsPrize,becomingoneoftheprestigiousgraduatesofKing'sCollege.

InMay1936,TuringsubmittedapapertotheprestigiousLondonmathematicsmagazineentitled"OntheApplicationofNumericalCalculationsinDecision-MakingProblems".Afterthearticlewaspublishedinthe42ndissueofthe"LondonMathematicalSociety"in1937,itimmediatelyattractedwidespreadattention.Intheappendixofthepaper,hedescribedamachinethatcanassistinmathematicalresearch,whichwaslatercalleda"Turingmachine".Themostrevolutionaryaspectofthisideaisthatitwasusedforthefirsttimeinpuremathematicalsymboliclogicandthephysicalworld.Aconnectionwasestablishedbetweenthem,andthecomputerswelaterbecamefamiliarwith,andthe"artificialintelligence"thathasnotyetbeenrealized,areallbasedonthisidea.Thisisthefirstimportantessayinhislifeandhisfamouswork.

In1937,anotherarticle"ComputabilityandλDefinability"publishedbyTuringbroadenedthe"Churchargument"putforwardbyChurchandformedthe"Church-Turingthesis",therigorofcomputingtheory,hasafoundationalsignificancefortheformationanddevelopmentofcomputerscience.

InSeptember1936,TuringwasinvitedtostudyatthePrincetonInstituteforAdvancedStudyandworkwithChurch.

DuringhisstayintheUnitedStates,hedidsomeresearchongrouptheoryandwroteadoctoraldissertation.HereceivedhisPh.D.degreefromPrincetonin1938.Histhesiswastitled"LogicalSystemBasedonOrdinalNumbers".Itwasformallypublishedin1939,whichhadaprofoundinfluenceontheresearchofmathematicallogic.

Inthesummerof1938,TuringreturnedtoEnglandandwasstillaresearcheratKing’sCollege,CambridgeUniversity,wherehecontinuedtostudymathematicallogicandcomputationaltheory,andatthesametimebeganthedevelopmentofcomputers.

WorldWarIIexperience

TheSecondWorldWarinterruptedTuring’snormalresearchwork.Intheautumnof1939,hewassummonedtotheBritishMinistryofForeignAffairsCommunicationsOfficeformilitarywork,mainlydecipheringTheworkoftheenemycipher.Duetotheneedofdecipheringwork,heparticipatedinthedevelopmentoftheworld'sfirstelectroniccomputer.Hisworkhasachievedexcellentresults,andin1945hewonthegovernment'shighestaward-theBritishEmpireMedalofHonor(O.B.E.Medal).

In1945,TuringendedhisworkintheMinistryofForeignAffairs.Hetriedtoresumetheresearchintheoreticalcomputersciencebeforethewar,andcombinedhisworkduringthewartodevelopanewcomputer.Thisideaissupportedbytheauthorities.Inthesameyear,TuringwashiredasaresearcherattheNationalInstituteofPhysicsinTeddington,andbegantoengageinthelogicaldesignandspecificdevelopmentofthe"automaticcomputer"(ACE)Work.Thisyear,Turingwrotea50-pagedesignspecificationaboutACE.Thisspecificationwasofficiallypublishedin1972afterbeingkeptsecretfor27years.UndertheguidanceofTuring'sdesignideas,theACEprototypewasproducedin1950,andalargeACEmachinewasproducedin1958.Itisbelievedthattheconceptofgeneral-purposecomputerwasproposedbyTuring.

From1945to1948,heworkedattheBritishNationalPhysicsLaboratoryandwasresponsiblefortheresearchofautomaticcalculationengines.

InAugust1946,Turingparticipatedinhisfirstraceafterformalrunningtraining.Thatwasthe3mile(4.8kilometers)raceheparticipatedinafterjoiningtheWaltonAthleticsClub.Turingwonthefirstplacein15minutesand37seconds,whichwasrankedfirstintheUKthatyear.20bits.

In1947,attheBritishAmateurAthleticsAssociationMarathonChampionshipheldattheUniversityStadiuminLoughborough,Leicestershire,TuringranoutofhismarathonPersonalbesttimeof2hours46minutesand03seconds,rankedfifthinthatgame.

In1948,TuringacceptedthepostofseniorlecturerattheUniversityofManchester,andwasappointedastheassistanttothepersoninchargeoftheManchesterAutomaticDigitalComputer(Madam)project.Summaryofwork.

In1949,hebecamethedeputydirectoroftheComputerLaboratoryoftheUniversityofManchester,responsibleforthesoftwaretheorydevelopmentoftheearliestrealcomputer-"ManchesterOne",sohebecamethefirstpersonintheworldtousecomputersinpractice.Ascientistwhostudiesmathematics.

In1950,Turingwroteandpublished"Theprogrammers’handbookfortheManchesterelectroniccomputer"(Theprogrammers’handbookfortheManchesterelectroniccomputer).Duringthisperiod,hecontinuedtoconducttheoreticalresearchonmathematicallogic.Andputforwardthefamous"TuringTest".Inthesameyear,heraisedthequestionaboutmachinethinking.Hispaper"ComputerandIntelligence(ComputingmachieryandIntelligence),attractedwidespreadattentionandfar-reachinginfluence.InOctober1950,Turingpublishedthepaper"CanMachinesThink".Thisepoch-makingworkearnedTuringthetitleof"FatherofArtificialIntelligence".

In1951,duetohisachievementsincomputablenumbers,hebecameaBritishRoyalMemberoftheSociety,attheageof39.

In1952,heresignedasaresearcheratKing’sCollege,CambridgeUniversityanddevotedhimselftoworkingattheUniversityofManchester.Inadditiontohisdailyworkandresearchwork,healsosupervisedsomedoctoralstudents.IalsoservedasaconsultantforFranti,acompanythatmakesManchester’sautomaticdigitalcomputers.

In1952,Turingwroteachessprogram.However,nocomputerhadenoughcomputingpoweratthetime.Ifhewasabletoexecutethisprogram,heimitatedthecomputer,andeachsteptookhalfanhour.Heplayedagamewithacolleague,andtheprogramfailed.Later,theresearchgroupofLosAlamosNationalLaboratoryinNewMexico,USA,accordingtothepictureLing’stheory,designedtheworld’sfirstcomputer-programmedchessonMANIAC.

Diedafterbeingpersecuted

In1952,Turing’ssame-sexpartnercollaboratedwithanaccompliceHebrokeintoTuring’shouseandcarriedoutthetheft.Turingcalledthepoliceforthis.However,thepoliceinvestigationresultedinhimbeingchargedwith"obviousindecencyandsexualreversal"(homosexuality).Hedidnotplead,Andwasconvicted.Afterthefamouspublictrial,hewasgiventwochoices:imprisonmentorhormonetherapy.Hechosehormonalinjectionsandlastedforayear.Duringthistime,thedrugproducedthecontinuousdevelopmentofbreasts.Sideeffects.

OnJune7,1954,Turingwasfounddeadonthebedathome,withabiteofacyanide-soakedappleonthebedside.ThepoliceinvestigationbelievesittobeadramaPoisonouscyanidepoisoning,andtheinvestigationconcludedthathecommittedsuicide.Turingwas41yearsoldatthetime.

Formallyrehabilitated

In2009,BritishcomputerscientistKangMing(JohnGraham-Cumming)InitiatedanonlinepetitiontorehabilitateTuring.AsofSeptember10,2009,thenumberofsignaturesinthepetitionhadexceeded30,000.Forthisreason,thethenBritishgovernmentandPrimeMinisterGordonBrownhadtoissueanofficialapology.

December2012,Hawking,(PaulNurse,NobelPrizewinnerinmedicine),(MartinRees,PresidentoftheRoyalSociety)i>ElevenimportantpersonsincludingtheBritishPrimeMinisterCameronsentalettertotheBritishPrimeMinisterCameron,requestingthatheberehabilitated.

OnDecember24,2013,attherequestofBritishMinisterofJusticeChrisGrayling(ChrisGrayling)Begging,theQueenofEnglandfinallyissuedaroyalpardontoTuring.TheBritishAttorneyGeneralannouncedthat“Turing’slaterlifewasforcedtocastashadowbecauseofhishomosexuality.Webelievethattheverdictatthattimewasunfair,andthisdiscriminationhasnowbeenabolished.Tothisend,theQueendecidedGiveapardontothisgreatmanasatributetohim."

MainAchievements

Turinghassomeofhisscientificachievementsinscience,especiallyinmathematicallogicandcomputerscience.,Whichconstitutesthebasisofmoderncomputertechnology.

ComputabilityTheory

Calculationcanbesaidtobethefirstmathematicalsubjectencounteredbymankind,andhasbecomeanindispensabletoolinpeople’ssociallifeinthelonghistory..So,whatiscalculation?Intuitively,calculationgenerallyreferstotheprocessoftransformingasetofvalues​​intoanother(required)valuebyapplyingpredeterminedrules.Foracertaintypeofproblem,ifacertainsetofrulescanbefound,accordingtothissetofrules,whenanyspecificproblemofthistypeofproblemisgiven,theresultcanbeobtainedcompletelymechanicallyinafinitestep.Classproblemsarecomputable.Thiskindofruleisanalgorithm,andthiskindofcomputableproblemcanalsobecalledaproblemwithanalgorithm.Thisistheintuitiveconceptofcomputabilityoralgorithmcomputability.

Beforethe20thcentury,itwasgenerallybelievedthatallproblemclasseshadalgorithms,andpeople’scomputationalresearchwastofindoutalgorithms.Itseemsthatjusttoprovethatallscientificpropositions,atleastallmathematicalpropositions,existalgorithms,Leibnizpioneeredtheresearchofmathematicallogic.Butatthebeginningofthe20thcentury,peoplediscoveredthatmanyproblemshavebeenstudiedforalongtime,andstillcan'tfindthealgorithm,suchasHilbert'stenthproblem,theproblemofsemigroupcharactersandsoon.Sopeoplebegantowonderwhethertherearenoalgorithmsfortheseproblems,thatis,theyarenotcomputable.Ofcourse,thisnon-existenceneedstobeproved.Atthistime,peoplediscoveredthatthereisnoprecisedefinitionforeitherthealgorithmorthecomputability!Accordingtotheaforementionedstatementofintuitivecomputability,itisimpossibletoprovethatthereisnoalgorithmatall,becausewhatdoes"completelymechanical"mean?Whatdo"determinedrules"mean?Itisstillunclear.Infact,thereisnocleardefinitionnorcanitbeabstractlyprovedthatthereisanalgorithmforacertaintypeofproblem.However,theexistenceofanalgorithmisgenerallyconfirmedbyconstructinganalgorithm,sotheprecisedefinitionofthealgorithmmaynotbeinvolved.

Theneedtosolvetheproblempromptspeopletocontinuetoexplore.In1934,GodelputforwardtheconceptofgeneralrecursivefunctionundertheenlightenmentofHerbrand,andpointedoutthatallalgorithmiccomputablefunctionsaregeneralrecursivefunctions,andviceversa.In1936,Kleene(Kleene)madeitmoreconcrete.Therefore,thegeneralrecursivefunctiondefinitionofthealgorithmiccomputablefunctionwaslatercalledtheElbron-Gödel-Krinidefinition.Inthesameyear,Churchprovedthattheλdefinablefunctionheproposedisequivalenttothegeneralrecursivefunction,andproposedthatthealgorithmiccomputablefunctionisequivalenttothegeneralrecursivefunctionorλdefinablefunction.Thisisthefamous"Churchargument".

Althoughageneralrecursivefunctionisusedtogiveastrictmathematicaldefinitionofacomputablefunction,inthespecificcalculationprocess,intermsofacertainstepofoperation,thereisstilluncertaintyaboutwhatinitialfunctionandbasicoperationtochoose.Inordertoeliminatealluncertainties,Turingdefinedthecomputablefunctionfromanewperspectiveinhisarticle"OnComputableNumbersandItsApplicationinDecisionProblems".Hecomprehensivelyanalyzedthecalculationprocessofpeople,andreducedthecalculationtothesimplest,mostbasic,andmostcertainoperationaction,soastouseasimplemethodtodescribethebasiccalculationprogramthatisintuitiveandmechanical,sothatanymachine(Anyprogramthatworks)canbereducedtotheseactions.Thissimplemethodisbasedontheconceptofanabstractautomaton,andtheresultisthatthealgorithmiccomputablefunctionisthefunctioncalculatedbythisautomaton.Thisnotonlygaveacompletelydefinitedefinitionofcomputing,butalsoconnectedcomputingandautomataforthefirsttime,whichhadahugeimpactonlatergenerations.Thiskindof"automata"waslatercalleda"Turingmachine".

TheTuringmachineisamathematicalmodelofanautomaton.Itisapapertapewithtwoends(oroneend)infinitelyextended.Itisdividedintosquares,andeachsquarecanbeprintedwithacertainalphabet.Aletterin(canalsobeaspace,denotedasS0);thereisalsoaread-writehead,whichhasalimitednumberofinternalstates.Atanytime,theread-writeheadlooksatacertainsquareonthepapertape,andexecutestheactionspecifiedbytheconversionruleaccordingtothecontentofthewatchedsquareandtheinternalstateoftheread-writeheadatthattime.EachTuringmachinehasasetoftransformationrules,theyhaveoneofthefollowingthreeshapes:

qiaRqi,qiaLqi,qiabqj

means:whentheread/writeheadisinstateqi,ifIfthecontentofthegazeboxislettera,thereadingheadwillmoveoneboxtotheright,ormoveoneboxtotheleft,orprinttheletterb(thatis,changethecontentofthegazeboxfromatob.a,bcanbeS0).

TuringdefinesacomputablefunctionasaTuringmachinecomputablefunction.In1937,TuringprovedthatTuringmachinecomputablefunctionandλdefinablefunctionareequivalentinhisarticle"Computabilityandλdefinability",thusbroadeningChurch'sargumentandderiving:Algorithm(Yes)ComputablefunctionsareequivalenttogeneralrecursivefunctionsorλdefinablefunctionsorTuringmachinecomputablefunctions.Thisisthe"Church-Turingthesis",whichperfectlysolvestheproblemoftheprecisedefinitionofcomputablefunctionsandgreatlypromotesthedevelopmentofmathematicallogic.

TheconceptofaTuringmachinehasaveryuniquemeaning:iftheinternalstateoftheTuringmachineisinterpretedasinstructions,expressedinalphabeticwords,andstoredinthemachineasoutputwordsandinputwords,thenBecomeanelectroniccomputer.Asaresult,thesubjectbranchof"automata"wascreated,whichpromotedtheresearchanddevelopmentofelectroniccomputers.

Atthesametime,Turingalsoproposedtheconceptofageneral-purposeTuringmachine,whichisequivalenttotheinterpreterprogramofageneral-purposecomputer.Thisdirectlypromotedthedesignanddevelopmentofgeneral-purposecomputers.TuringhimselfparticipatedDidthisjob.

WhilegivingageneralTuringmachine,TuringpointedoutthatwhencalculatingageneralTuringmachine,its"mechanicalcomplexity"hasacriticallimit.Ifthislimitisexceeded,itisnecessarytorelyonIncreasethelengthoftheprogramandtheamountofstoragetosolve.Thiskindofthinkingopeneduptheprecedentofcomputationalcomplexitytheoryincomputerscience.

Judgingtheproblem

Theso-called"decisionproblem"referstodeterminingwhethertheso-called"largenumberofproblems"hasanalgorithmicsolution,orwhetherthereisafeasiblemethodtomakeeachspecialcaseoftheproblemclassItcanbedeterminedmechanicallyinalimitednumberofstepswhetherithasacertainproperty(suchaswhetheritistrue,whetheritissatisfied,whetherthereisasolution,etc.,dependingonthenatureofalargenumberofproblems).

Thedeterminationproblemiscloselyrelatedtothecalculabilityproblem,andthetwocanbemutuallydefined:ifacertaintypeofproblemcanbefoundtodeterminewhetherithasacertainproperty,thenthistypeofproblemiscalledCanbedeterminedorsolvable;otherwiseitisundecidableorunsolvable.Thereisadifferencebetweenthetwo:thejudgmentproblemistodeterminewhetherthereisanalgorithmsothateachspecialcaseofatypeofproblemcangivea"yes"or"no"answertoacertainproperty;theproblemofcomputabilityItistofindanalgorithmtofindsomespecificobjects.

Turing’smajorachievementinthedecisionproblemistousetheTuringmachine’s"haltingproblem"asthebasisforstudyingmanydecisionproblems.Generally,adecisionproblemisreducedtoahaltingproblem:"IfproblemAcanbeIfitisjudged,thentheshutdownproblemcanbedetermined.”Thus,the“problemAisundecidable”isderivedfrom“theshutdownproblemisundecidable”.

Theso-calledshutdownmeansthattheTuringmachinereachesaresultstate,astatenotontheinstructionlist,orasymbolduality,whichleadstotheterminationofthecalculation.Ateachmoment,thestateofthemachine,allthegridswithsymbolsonthepapertape,andthegridpositionthemachineiscurrentlylookingatarecollectivelyreferredtoasthelayoutofthemachine.Startingfromtheinitialpattern,Turingmachinetransformstheinitialpatternintoasequenceofpatternsstepbystepaccordingtotheprocedure.Thisprocessmaycontinuewithoutrestriction,oritmaystopwhenitencountersastate,acombinationofsymbolsthatisnotlistedintheinstructiontable,orentersanendstate.Thepatternreachedbytheshutdownintheendstateisthefinalpattern,andthisfinalpattern(ifany)containsthecalculationresultofthemachine.Theso-calledshutdownproblemis:IsthereanalgorithmthatcandeterminewhetheranyinitialpatternwillcauseshutdownforanygivenTuringmachine?Turingprovedthatsuchanalgorithmdoesnotexist,thatis,thehaltingproblemisundecidable,makingitthebasisforsolvingmanyundecidableproblems.

In1937,TuringusedhismethodtosolvethefamousHilbertdecisionproblem:thejudgmentproblemofthesatisfiabilityofthenarrowpredicatecalculus(alsoknownasfirst-orderlogic)formula.Heusedtheformulasinfirst-orderlogictoencodetheTuringmachine,andthenderivedtheundecidabilityofthefirst-orderlogicfromtheundecidabilityoftheTuringmachine'shaltingproblem.The"codingmethod"heinventedherebecameoneofthemainmethodsthatpeoplelaterprovedtheundecidabilityofformulasinfirst-orderlogic.

Ontheissueofjudgment,anotherachievementofTuringistheconceptofTuringmachinewithexternalinformationsourceproposedin1939,andfromthis,theconceptof"Turingreducibility"andrelativerecursionisderived.Usingtheconceptsofreductionandrelativerecursion,thedegreeofundecidabilityandnon-recursioncanbecompared.Onthisbasis,E.Postputforwardtheimportantconceptofunsolvability,andtheworkinthisareahasmadesignificantprogresslater.

&Dictionary,whetherthereisanalgorithmthatcandeterminewhethertwoarbitrarilygivenwordsareequivalent[givenafinitenumberofdifferentsymbolscalledletters,thenthealphabetisgiven,andthefinitesequenceoflettersiscalledthealphabetontheCharacter.Thefinitepairofwords(A1,B1),...,(An,Bn)iscalledadictionary.IfthetwowordsRandScanbetransformedintoeachotherafterusingafinitenumberofdictionaries,theyaresaidtobeequivalent]In1947,PostandA.A.MarkovusedTuring'scodingmethodtoprovethatthisproblemisundecidable.In1950,Turingfurtherprovedthattheproblemofsemigroupcharactersthatsatisfiesthelawofeliminationisalsoundecidable.

ElectronicComputer

Turing’sworkofdecryptionduringWorldWarIIinvolvedthedesignanddevelopmentofelectroniccomputers,butthisworkisstrictlyconfidential.Itwasn'tuntilthe1970sthattheinsidestorywasrevealed.Judgingfromsomedocuments,itisverylikelythattheworld’sfirstelectroniccomputerwasnotENIAC,butanothermachinerelatedtoTuring.)Machine,thedesignofthismachineadoptscertainconceptsproposedbyTuring.Ituses1500electrontubes,usesaphotocellreader;usesperforatedpapertapeforinput;andusesatubebistablecircuittoperformcounting,binaryarithmeticandBooleanalgebraiclogicoperations.Thegiantmachineproducedatotalof10units,usingthemExcellentcompletionofthecodedecipheringwork.

Afterthewar,TuringworkedattheTeddingtonNationalPhysicalLaboratoryandbegantoworkonthelogicdesignandspecificdevelopmentofthe"AutomaticComputingEngine".In1946,Turingpublishedapaperexpoundingthedesignofastoredprogramcomputer.HisachievementsarethesameasJohnvonNeumannwhostudiedtheElectronicDiscreteVariableAutomaticComputer(ElectronicDiscreteVariableAutomaticComputer).BothTuring'sautomaticcomputerandNeumann'sdiscretevariableautomaticelectroniccomputerusebinarysystems,andbothuse"memorytostoreprogramstorunthecomputer"tobreaktheoldconceptofthatera.

ArtificialIntelligence

In1949,TuringbecametheAssociateDeanoftheUniversityofManchesterComputingLaboratory,dedicatedtothedevelopmentandoperationoftheManchesterMark1modelstorageprogramThesoftwarerequiredbythecomputer.In1950,hepublishedthepaper"ComputerMachineryandIntelligence"(ComputingMachineryandIntelligence),whichprovidedgroundbreakingideasforlaterartificialintelligencescience.Putforwardthefamous"TuringTest",pointingoutthatifathirdpartycannotdistinguishthedifferencebetweentheresponsesofhumanbeingsandartificialintelligencemachines,itcanbeconcludedthatthemachinehasartificialintelligence.

In1956,Turing'sarticlewasrepublishedunderthetitle"Canmachinesthink?".Atthistime,artificialintelligencehasalsoenteredthestageofpracticaldevelopment.Turing'smachineintelligencethoughtisundoubtedlyoneofthedirectoriginsofartificialintelligence.Andwiththein-depthresearchinthefieldofartificialintelligence,peoplehavebecomemoreandmoreawareoftheprofoundnessofTuring'sthoughts:theyarestilloneofthemainideasofartificialintelligencetoday.

MathematicalBiology

From1952untilhisdeath,Turinghasbeendoingresearchinmathematicalbiology.Hepublishedapaper"TheChemicalBasisofMorphogenesis"in1952.HismaininterestistheFibonaccileafsequence,theFibonaccinumberthatexistsinthestructureofplants.Heappliedthereaction-diffusionformula,whichhasnowbecomethecoreofthepatternformationcategory.Noneofhislaterpaperswerepublished,anditwasnotuntilthepublicationofAlanTuring'sSelectedWorksin1992thatthesearticlesappeared.

TuringTest

From1945to1948,Turingwasinchargeoftheautomaticcalculationengine(ACE)attheNationalPhysicalLaboratory.In1949,hebecamethedeputydirectoroftheComputerLaboratoryattheUniversityofManchester,responsibleforthesoftwareworkofthefirstrealcomputer,ManchesterOne.Duringthistime,hecontinuedtodosomemoreabstractresearch,suchas"computingmachineryandintelligence".Inhisresearchonartificialintelligence,TuringproposedanexperimentcalledtheTuringtesttotrytodetermineastandardfordeterminingwhetheramachinehasfeelings.

TheTuringtestconsistsofacomputer,apersontobetested,andapersoninchargeofthetest.Thecomputerandthepersonbeingtestedareintwodifferentrooms.Duringthetestingprocess,thehostwillaskquestions,andthecomputerandthetestedpersonwillanswerseparately.Observerscancommunicatewithmachinesandpeoplethroughteletypewriters(avoidrequiringmachinestosimulatehumanappearanceandvoice).Whenansweringquestions,thetesteeshowsasmuchaspossiblethatheisa"real"person,andthecomputerwillalsoimitatehumanthinkingandthinkingprocessesasrealisticallyaspossible.Ifafterlisteningtotheirrespectiveanswers,thetesthostcan'ttellwhichisansweredbyhumanandwhichisansweredbymachine,thenthecomputercanbeconsideredtobeintelligent.Thisexperimentmayberecognizedbymostpeople,butitcannotsatisfyallphilosophers.AlthoughtheTuringtestvividlydepictsthesimulationrelationshipbetweencomputerintelligenceandhumanintelligence,theTuringtestisstillaone-sidedtest.Amachinethathaspassedthetestcanofcoursebeconsideredintelligent,butamachinethathasnotpassedthetestcanstillbeconsideredintelligentbecauseithasinsufficientknowledgeofhumansandcannotsimulatehumans.TheTuringtesthasseveralpointsworthyofscrutiny.Forexample,thetesthost’scriteriaforaskingquestionsarenotclearlygiveninthetest;thesubject’sownintelligencelevel,theTuringtestisalsoneglected;andtheTuringtestItonlyemphasizestheresultsoftheexperiment,butdoesnotreflectthethoughtprocessofintelligence.Therefore,theTuringteststillcannotcompletelysolvetheproblemofmachineintelligence.Forexample:thequestionercansay:"IheardthatarhinoceroswasflyingalongtheMississippiRiverinapinkballooninthemorning.Whatdoyouthink?"(Youcanimaginethecoldsweatontheshouldersofthecomputer:)ThecomputermayAnsweredcautiously:"Isoundsincredible,"sofarthereisnothingwrong.Thequestioneraskedagain:"Really?Myuncletrieditonce,downstreamandupstream.It'sjustlight-coloredwithmarkings.What'sincredibleaboutthis?"It'seasytoimagineifacomputerWithoutproper"understanding",youwillquicklyexposeyourself.Whenansweringthefirstquestion,thecomputer'smemorybankthinksverypowerfullythatrhinosdonothavewings,andtheycanevenunintentionallyget"Rhinoceroscan'tfly",oranswerthisway.Thesecondquestionis"therhinohasnomarkings."Thenexttimethequestionercantestthereallymeaninglessquestion.Forexample,changeitto"belowtheMississippiRiver"or"outsideapinkballoon".Or"wearapinkdress"andseeifthecomputerfeelstherealdifference.Infact,itistoomuchtorequireacomputertoimitatehumanssocloselythatitcannotbedistinguishedfromaperson.Someexpertsbelievethatweshouldnotaimattheabilityofcomputerstothink,butaimattheextenttowhichwecanimitatehumanthinking;then,letthedesignerworktowardsthisgoal.In1952,Turingwroteachessprogram.However,atthattime,nocomputerhadenoughcomputingpowertoexecutethisprogram.Heimitatedthecomputerandtookhalfanhourforeachstep.Heplayedagamewithacolleague,andtheprogramlost.Later,theresearchgroupofLosAlamosNationalLaboratoryinNewMexico,USA,basedonTuring'stheory,designedtheworld'sfirstcomputer-programmedchessonMANIAC.

Characterevaluation

Turingisnotonlyfamousfordecipheringpasswords,healsomadeimportantcontributionsinthefieldsofartificialintelligenceandcomputers,andheisoftenregardedasamoderncomputerscienceFounder.Afterthewar,heworkedattheUniversityofManchesteranddevelopedthe"ManchesterMarkOne"-oneofthefamousmoderncomputers.In1999,hewasselectedbyTimemagazineasoneofthe100mostimportantfiguresofthe20thcentury.

2012isthecentennialbirthdayofagreatman.Evenifwededicateallournoblecomplimentstohim,itcannotbeoverstated.HeisAlanTuring.100yearsago,AlanTuringwasborninanerainwhichthecultureandtechnologicallevelarecompletelydifferentfromthoseoftoday,butthisdoesnotpreventhimfrombecomingoneoftoday'sgreatestandmemorablepeople.Helaidanindeliblefoundationforthecomputerfield.Withouthim,therewouldbenocomputerstoday.(TuringAwardRecipient,GoogleSeniorVicePresidentandChiefInternetExpertWentCerfevaluation)

TuringplayedakeyroleincrackingtheGermanarmycodesofWorldWarIIandsavingthecountry.Hewasan"amazingman".(PrimeMinisteroftheUnitedKingdomCameronevaluation)

Aweirdgaywhodoesn’tbelieveinGod,abrilliantBritishmathematicsHome,twobighatstangledTuringtightly.However,hehastwogreathistoricalmissions,oneisthemostpoeticconceptsandtheoriesincomputerscience,andtheotheristosolvethemysteryforworldpeaceduringtheSecondWorldWar.(Theauthorof"GödelEscherBach"andtheevaluationofartificialintelligenceexpertDouglasHofstadter)

Mainhonors

1926,TuringwasadmittedtothefamousBritishSherburneCollege,andwontheKingEdwardVI'sGoldenShieldofMathematicsinmiddleschool.

In1932,hewonthefamousBritishSmithPrizeinMathematics.

In1946,duetohisgreatcontributiontodecipheringGermancodesinWorldWarII,hewasawardedthe"BritishEmpireMedal",whichisthehighesthonorawardedbytheBritishRoyalFamilytothosewhohavemadegreatcontributionstothecountryandpeople.

Relatives

ThreeofthefamilymemberswereelectedmembersoftheRoyalSociety,andhisgrandfatheralsoreceivedanhonorarydegreeinmathematicsfromCambridgeUniversity.

  • Turing'sfatherJuliusMathisonTuring(JuliusMathisonTuring)studiedintheHistoryDepartmentofKopastiCollege,OxfordUniversityinhisearlyyears.SenttoIndiaasanofficialoftheMinistryofCivilAffairs.

  • Turing'smother,E·S·Stoney,wasborninafamilyofrailwayengineersandstudiedattheFacultyofArtsandSciencesattheUniversityofParis.Turingwasthesecondson.

CommemorationofLaterGenerations

TuringAward

Tocommemoratehisgreatcontributiontocomputerscience,theAmericanComputerSociety(ACM)TheannualTuringPrizewasestablishedin1966torecognizethosewhohavemadeoutstandingcontributionsincomputerscience.TheTuringPrizeisknownasthe"NobelPrizeinComputerScience."

ThePrimeMinisterapologizes

Overtheyears,famousscientistsincludingHawkinghavecontinuouslyurgedtheBritishgovernmenttoamnestythis"oneofthemostoutstandingmodernmathematicians."

OntheeveningofSeptember11,2009,onbehalfoftheBritishgovernment,BritishPrimeMinisterBrownmadeaclearstatementtothefamousBritishmathematicianandGermancryptographerAlanMathisonTuring,whohaspassedawayfor55years.Apologize.ThecodebreakerduringWorldWarIIwasconvictedof"chemicalcastration"forhomosexualityandcommittedsuicidein1954.

BrownsaidthatTuring’streatmentwas“horrifying”and“completelyunfair”,andBritain’sdebttothisoutstandingmathematicianwashuge.Brownsaidhewasproudtomakeaformalapology."Youhavenotbeentreatedbetter,andwearedeeplysorry."ThestatementsignedbyBrownwaspostedonthewebsiteofNo.10DowningStreet.

Queen'spardon

OnDecember24,2013,QueenElizabethIIoftheUnitedKingdomsignedapardonforTuring,whichwasclassifiedas"seriouslyobscene",andittookeffectimmediately.SecretaryofJusticeChrisGraylingsaidTuringshouldbedeservedly"rememberedandrecognizedforhisunparalleledcontributiontothewar",ratherthancriminalizinghimlater.InAugust2013,theQueenofficiallyannouncedthepardonofTuring.

Britishintelligenceagenciesapologize

OnApril16,2016,oneofthethreemajorintelligenceagenciesintheUK-GovernmentCommunicationsHeadquarters(GCHQ)RobertHannigan(RobertHannigan)Itwasstatedatthemeetingthattheintelligenceagencyapologizedforthewrongtreatmentofthe"fatherofartificialintelligence"AlanMathisonTuringinthe1950s.

HannigansaidthatthegovernmentcommunicationsheadquarterstreatedTuringandothergeniuseswrongly:"Theyaretortured,itisourloss,butalsothelossofthecountry.Weshouldapologizeforthis."

CentennialAnniversary

OnJune15-16,2012,33TuringAwardwinnersgatheredforthefirsttimeinSanFranciscotocommemorateAlanTuring’s100thbirthday.TogethertheyreviewedTuring'sgreatcontributionsandthedevelopmentofcomputerscienceinthepastfewdecades,andtalkedfreelyaboutthinkingaboutthefuture.

UK£50

OnJuly15,2019,theGovernoroftheBankofEnglandMarkCarneyshowedoffthenewversionofthe£50banknote,andAlanTuringboardedtheUK£50newBanknotes.TheBritishBroadcastingCorporation(BBC)statedthatthenewbanknoteswithafacevalueof£50willentercirculationattheendof2021.

Artisticimage

Literaryworks

"AlanTuringBiography"waswrittenbyBritishwriterAndrewHodgesandhasbeenpublishedbyHunanScienceandTechnologyPublishedinDecember2012,itisrecognizedasthemostauthoritativebiographyofTuring.TheauthorAndrewHodgesisamathematicianatOxfordUniversityandahomosexual.HecollectedalotofhistoricalmaterialsandwrotethisTuringbiography.

Filmandtelevisionimage

2014basedonAndrewHodges’sbiography"AlanTuringBiography"adaptedintothefilm"ImitationGame"andwonthe87thin2015OscarforBestAdaptedScreenplay,theactorwhoplayedTuringwasBenedictCumberbatch.

This article is from the network, does not represent the position of this station. Please indicate the origin of reprint
TOP